
  

Scapegoat Trees



  

Outline for Today

● Recap from Last Time

● What is amortization, again?

● Lazy Balanced Trees

● Messes are okay, up to a point.

● Lazy Tree Insertions

● Deferring updates until they’re needed.

● Lazy Tree Deletions

● And some associated subtleties.



  

Recap from Last Time



  

Amortized Analysis

● We will assign amortized costs to each operation such that

● To do so, deEne a potential function Φ such that

● Φ measures how “messy” the data structure is,

● Φstart = 0, and

● Φ ≥ 0.

● Then, deEne amortized costs of operations as

amortized-cost = real-cost + k · ΔΦ

for a choice of k under our control.

● Intuitively:

● If an operation makes a mess that needs to be cleaned up later, its 
amortized cost will be higher than its original cost.

● If an operation cleans up a mess, its amortized cost will be lower than its 
real cost.

∑ amortized -cost ≥ ∑ real-cost



  

New StuP!



  

Balanced Trees

● The red/black trees we explored earlier are 
worst-case ePicient and guaranteed to have a 
height of O(log n).

● However, explaining how they work and deriving 
the basic insertion rules took two lectures – and 
we still didn’t Enish covering all cases.

● Goal for today: Find a simpler way to keep a 
tree balanced, under the assumption we’re okay 
with amortized-ePicient rather than worst-case 
ePicient lookups.



  

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0 
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a 
single insertion or deletion might require a lot of 
node reshu_ing.
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On O(log n) Height

● To speed up logic after insertions or deletions, most balanced 
BSTs only guarantee height of multiple of lg n.

● For example, red/black trees have height at most (roughly) 
2 lg n in the worst case.



  

On O(log n) Height

● We’re already comfortable with trees 
whose heights are α lg n for some α > 1.

● Question: Can we design a balanced 
tree purely based on this restriction, 
without any other structural constraints?



  

Adding Slack Space

● Pick a Exed constant 
α > 1.

● Set the maximum 
height on our tree to 
α lg n.

● As long as we don’t 
exceed this maximum 
height, all operations 
on our BST will run 
in time O(log n), and 
we don’t really care 
about the shape of 
the tree.
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Adding Slack Space

● For each node v in our 
BST, let size(v) denote 
the number of nodes in 
the subtree rooted at v 
and height(v) denote the 
height of the subtree 
rooted at v.

● We’ll say that a node v is
α-balanced if

height(v) ≤ α lg size(v).

● Intuitively, a α-balanced 
node is the root of a 
subtree whose height is 
within a factor of α of 
optimal.
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Adding Slack Space

● Suppose, however, that 
after doing an 
insertion, our tree 
exceeds α lg n.

● At this point, we need 
to do some sort of 
“cleanup” on the tree 
to pull it back to a 
reasonable height.

● Ideally, we’ll want to 
minimize the amount of 
cleanup we need to do 
so that this step will 
run quickly.
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lg n                                                              

Scapegoat Nodes

● Look at the access path from 
the root node to the newly-
inserted node.

● We know the root node is not
α-balanced, since the overall 
tree is too tall.

● We also know that the newly-
inserted node is α-balanced, 
since it has no children.

● Therefore, there has to be 
some deepest node on the 
access path that isn’t α-
balanced.

● We can “blame” the imbalance 
in the overall tree on this 
subtree. The node chosen this 
way is called the scapegoat.
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Scapegoat Nodes

● We know that the 
subtree rooted at the 
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree 
as a perfectly-balanced 
BST.

● This will reduce the 
height of the subtree, 
which in turn restores 
the requirement that 
the height be at most 
α lg n.
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lg n                                                              

Scapegoat Nodes

● We know that the 
subtree rooted at the 
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree 
as a perfectly-balanced 
BST.

● This will reduce the 
height of the subtree, 
which in turn restores 
the requirement that 
the height be at most 
α lg n.
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Scapegoat Trees

● A scapegoat tree is a 
balanced binary search 
tree that works as follows:

● Pick some constant α > 1.

● As long as the tree height is 
below α lg n, don’t do any 
rebalancing after 
insertions.

● Once the tree exceeds that 
height, End the scapegoat 
(the deepest α-imbalanced 
node on the insertion path).

● Then, optimally rebuild the 
subtree rooted at that node.

● All that’s left now is to 
work through the details.
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Scapegoat Trees

● Questions we need to 
address:

● How do we know that 
optimally rebuilding the 
scapegoat’s subtree will Ex 
the tree height?

● How quickly can we optimally 
rebuild the subtree rooted at 
the scapegoat node?

● How do we End the scapegoat 
node?

● In an amortized sense, how 
fast is this strategy?

● Let’s address each of these 
in turn.
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The Impact of Rebuilding



  

Scapegoat Rebuilding

● Our strategy relies on the following 
claim:

Optimally rebuilding the subtree 
rooted at the scapegoat node ensures 
that, as a whole, the tree has height 

at most α lg n.

● This turns out to not be too diPicult to 
prove. Let’s break it down into pieces.



  

lg n                                                              

Scapegoat Rebuilding

● Suppose we insert a node that 
causes the α lg n size limit to 
be violated.

● Just before we inserted that 
node, all other nodes in the 
tree were at height α lg n or 
below.

● That means each other node is 
at depth ⌊α lg n⌋, and our new 
node is at depth ⌊α lg n⌋ + 1.

● Now, look at the scapegoat 
node and its subtree.

● Because our oPending node is 
only one level too deep, we 
just need to show that 
optimally rebuilding the 
scapegoat subtree reduces its 
depth by at least one.
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Scapegoat Rebuilding

● Let v be our scapegoat node. Since it’s not α-balanced, we 
know that

heightbefore(v) > α lg size(v).

● Let r be the root of the subtree we get after rebuilding at v. 
Because we rebuilt v’s tree perfectly, we know that

lg size(v) ≥ heightafter(r).

● Putting this together gives us that

heightbefore(v) > α lg size(v) > lg size(v) ≥ heightafter(r).

● This means that

heightbefore(v) > heightafter(r).

● Therefore, the height of v’s subtree after rebuilding has 
decreased by at least one, so overall balance is restored.



  

The Cost of Rebuilding



  

The Cost of Rebuilding

● Once we’ve identiEed the scapegoat 
node, we need to rebuild the subtree 
rooted at that node as a perfectly-
balanced BST.

● How quickly can we do this?



  

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of 
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and 
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the 
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v)) 
because there are size(v) nodes visited, and the recursive algorithm 
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but 
others exist that are faster in practice or more space-ePicient. 
Look up the Galperin-Rivest or Day-Stout-Warren algorithms 
for other ways to do this in time O(size(v)) in less space.



  

Finding the Scapegoat Node



  

lg n                                                              

46

Finding the Scapegoat

● Recall: The 
scapegoat node is 
the deepest node 
on the access path 
that isn’t α-
balanced.

● How ePiciently can 
we identify this 
node?
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Finding the Scapegoat

● We need to check if 
height(v) > α lg size(v).

● Observation: For 
each node v on the 
access path, height(v) 
is the number of steps 
between v and the 
newly-added node.

● This can be computed 
by counting upward 
from the new node.

● That just leaves 
computing size(v).
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Finding the Scapegoat

● There are two ways we can 
compute size(v) for the 
nodes on the access path.

● Approach 1: Augment 
each node with the number 
of nodes in its subtree.

● (This can be done without 
changing the cost of an 
insertion or deletion.)

● We can then read size(v) by 
looking at the cached value.

● This has the disadvantage 
of requiring an extra 
integer in each node of the 
tree.
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Finding the Scapegoat

● Approach 2: Compute 
these values bottom-up.

● Start with a total of 1 for 
the newly-added node.

● Each time we move 
upward a step, run a DFS 
in the opposite subtree to 
count the number of 
nodes there.

● Once we hit the 
scapegoat node v, we’ll 
have done O(size(v)) total 
work counting nodes.
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Finding the Scapegoat

● Approach 1 does less 
work, but requires more 
storage in each node.

● Approach 2 does more 
work, but means each 
node just stores data 
and two child pointers.

● Which of these ends up 
being more important 
depends on a mix of 
engineering constraints 
and personal 
preference.
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Analyzing EPiciency



  

Analyzing EPiciency

● Based on what we’ve seen so far, the cost of an 
insertion is

● O(log n) if the insertion keeps us below the α lg n 
height threshold, and

● O(log n + size(v)) if we have to rebuild v as a 
scapegoat.

● The size(v) term can be as large as n, which may 
happen if the whole tree has to be rebuilt.

● However, it turns out that we can amortize this 
size(v) term away.



  

Analyzing EPiciency

● Recall: To perform an amortized analysis, we do 
the following:

● Find a potential function Φ that, intuitively, is small 
when the data structure is “clean” and large when the 
data structure is “messy.”

● Compute the value of ΔΦ = Φafter – Φbefore for each 
operation.

● Assign amortized costs as

amortized-cost = real-cost + k · ΔΦ

for some constant k we get to pick.

● Our Erst step is to End a choice of Φ that’s large 
when our tree is imbalanced and small when it’s 
balanced.



  

Quantifying Imbalance

● Right before we rebuild a scapegoat subtree, 
that tree is α-imbalanced.

● Right after we rebuild a scapegoat subtree, 
that tree is perfectly balanced.

● Goal: Find a choice of Φ for our tree so that

● perfectly-balanced trees have low Φ, and

● α-imbalanced trees have high Φ.

● At this point, we need to do some exploring to 
see what we End.



  

Quantifying Imbalance

● When we talk about “perfectly balanced” trees, what 
exactly is this “balance” in reference to?

● Intuition 1: A perfectly balanced tree is one where each 
node has roughly the same number of children in its left 
subtree as in its right subtree.

● Intuition 2: An “imbalanced” tree will have nodes whose 
left and right subtrees have diPering numbers of nodes.

3 7

5

11 15

13

9

3

5

7

9

11 15

13



  

Quantifying Imbalance

● For each node v, deEne the imbalance of 
the node as

⚖(v) = |size(v.left) – size(v.right)|.

● This gives us a quantitative measure of our 
more nebulous concept of “imbalance.”
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DeEning our Potential

● We’re looking for a potential function Φ where

● a perfectly-balanced tree has low Φ, and

● an imbalanced tree has progressively higher Φ.

● A balanced tree has (⚖ v) low for all its nodes.

● An imbalanced tree has (⚖ v) high for many nodes.

● Initial Idea: DeEne Φ = Σv (⚖ v).

3 7

5

11 15

13

9

3

5

7

9

11 15

13



  

DeEning our Potential

● We’ve set Φ = Σv (⚖ v).

● What is Φ for the three trees shown below?
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DeEning our Potential

● We’ve set Φ = Σv (⚖ v).

● What is Φ for the three trees shown below?
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DeEning our Potential

● We’ve set Φ = Σv (⚖ v).

● What is Φ for the three trees shown below?

3 7

5

11 15

13

9

1 4

3 7

5

11 15

13

9

1 106 146 10

Φ = 6 Φ = 4

3

5

11

13

9

Φ = 2



  

DeEning our Potential

● Observation 1: Two trees that Ell their rows as 
ePiciently as possible may have diPerent potentials.

● This means that when we rebalance trees, we need 
to make sure to equalize the number of nodes in 
the left and right subtrees of each node.
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DeEning our Potential

● Observation 2: The potential of a perfectly-balanced 
tree can grow as a function of its number of nodes.

● Ideally, both of these trees should have potential 0, 
indicating “perfectly balanced.” The potential 
shouldn’t depend on the number of nodes in the tree.
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DeEning our Potential

● To account for otherwise balanced trees 
with extra nodes in their bottom layers, 
let’s deEne ’(⚖ v) as

● ’⚖ (v) = 0 if (⚖ v) ≤ 1.

● ’⚖ (v) = (⚖ v) otherwise.

● Revised Idea: Set Φ = Σᵥ ’⚖ (v).



  

DeEning our Potential

● We’re now using Φ = Σv ’(⚖ v).

● What is Φ for the three trees shown below?

● Intuition: If a subtree rooted at v is perfectly 
balanced, then ’(⚖ v) = 0.
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Analyzing Scapegoat Trees

● Now that we have a deEnition of Φ, we can 
look at the amortized cost of an insertion.

● We need to consider two cases:

● Case 1: The insertion doesn’t trigger a rebuild.

● Case 2: The insertion triggers a rebuild.

● Intuitively, we’re hoping that Case 1 has a 
small positive ΔΦ (messes accumulate 
slowly) and that Case 2 has a large negative 
ΔΦ (messes get cleaned up quickly).

● Let’s run the numbers!



  

Analyzing Scapegoat Trees

● Case 1: Our insertion does not trigger a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we get to pick.

● We’re inserting into a tree of height at most α lg n, so our
real-cost is O(log n).

● When we insert the node, it changes (⚖ v) by ±1 for each 
node v on its access path.

● There are O(log n) nodes on this access path, and (⚖ v) 
increases by at most one for each of those nodes. This means 

’(⚖ v) increases by at most two for each of those nodes.

● Therefore, ΔΦ = O(log n).

● Amortized cost: O(log n) + k · O(log n) = O(log n).

What are real-cost and ΔΦ,
as a function of n?

Formulate a hypothesis! 



  

Analyzing Scapegoat Trees

● Case 1: Our insertion does not trigger a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we get to pick.

● We’re inserting into a tree of height at most α lg n, so our
real-cost is O(log n).

● When we insert the node, it changes (⚖ v) by ±1 for each 
node v on its access path.

● There are O(log n) nodes on this access path, and (⚖ v) 
increases by at most one for each of those nodes. This means 

’(⚖ v) increases by at most two for each of those nodes.

● Therefore, ΔΦ = O(log n).

● Amortized cost: O(log n) + k · O(log n) = O(log n).

What are real-cost and ΔΦ,
as a function of n?

Discuss with your neighbors! 



  

Analyzing Scapegoat Trees

● Case 1: Our insertion does not trigger a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we get to pick.

● We’re inserting into a tree of height at most α lg n, so our
real-cost is O(log n).

● When we insert the node, it changes (⚖ v) by ±1 for each 
node v on its access path.

● There are O(log n) nodes on this access path, and (⚖ v) 
increases by at most one for each of those nodes. This means 

’(⚖ v) increases by at most two for each of those nodes.

● Therefore, ΔΦ = O(log n).

● Amortized cost: O(log n) + k · O(log n) = O(log n).



  

Analyzing Scapegoat Trees

● Case 1: Our insertion does 
not trigger a rebuild.

● In this case, ΔΦ = O(log n).

● Focus on any one of the 
new node’s ancestors.

● If we rebuild the subtree 
rooted at that node in the 
future, we have to do some 
work to move the new node.

● Intuition: The O(log n) 
added potential 
corresponds to paying O(1) 
work in advance to each of 
O(log n) future rebuilds.
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Analyzing Scapegoat Trees

● Case 2: Our insertion triggers a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we pick.

● Here, real-cost is O(log n + size(v)), where v is the 
scapegoat node.

● The O(log n) comes from the cost of the actual insertion.

● The O(size(v)) is for the cost of rebuilding.

● For this to amortize away, we need ΔΦ to be -Ω(size(v)).

● Our previous intuition tells us this should be the case.

● Let’s run the numbers to check.



  

Analyzing Scapegoat Trees

● Let v be the scapegoat 
node. We’re interested in 

(⚖ v).

● One of v’s children is a 
tree containing our 
newly-inserted node. 
Call that subtree x.

● Call v’s other child y.

● Goal: Determine
(⚖ v) = |size(x) – size(y)|.
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Since α > 1,
we know that
21/α ∈ (1, 2)

Analyzing Scapegoat Trees

● Since v is α-imbalanced, we 
know

height(v) > α lg size(v).

● v is the deepest α-imbalanced 
node on the access path. This 
means x is α-balanced, so

height(x) ≤ α lg size(x).

● Since the newly-inserted node is 
the deepest node in v’s subtree, 
we know that

height(v) = height(x) + 1.

● Putting all this together gives

α lg size(v) < α lg size(x) + 1.

● That in turn means that

size(v) < size(x) · 21/α.
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Analyzing Scapegoat Trees

● We just proved that

size(v) < size(x) · 21/α.

● We also know that

size(v) = 1 + size(x) + size(y).

● That means

size(x) + size(y) < size(x) · 21/α.

● Therefore,

size(y) < size(x) · (21/α – 1).

● This means that

 ⚖(v) = |size(x) – size(y)|
        > size(x) – size(x) · (21/α – 1)
        = size(x) · (2 – 21/α).

● Combined with the initial 
inequality, this gives us that

⚖(v) > size(v) · (21 – 1/α – 1).

v

x y

Since 21/α ∈ (1, 2), we
know 21/α – 1 ∈ (0, 1).

 

So y must have
fewer nodes than x.

 

(Surprising, but true!
Explore and see why!)



  

Analyzing Scapegoat Trees

● We just proved that

size(v) < size(x) · 21/α.

● We also know that

size(v) = 1 + size(x) + size(y).

● That means

size(x) + size(y) < size(x) · 21/α.

● Therefore,

size(y) < size(x) · (21/α – 1).

● This means that

 ⚖(v) = |size(x) – size(y)|
        > size(x) – size(x) · (21/α – 1)
        = size(x) · (2 – 21/α).

● Combined with the initial 
inequality, this gives us that

⚖(v) > size(v) · (21 – 1/α – 1).

v

x y

21 – 1/α ∈ (1, 2),
So 21 – 1/α – 1 ∈ (0, 1).



  

Analyzing Scapegoat Trees

● We’ve just concluded that 

⚖(v) > size(v) · (21 – 1/α – 1)

● Let’s take a minute to check 
our math.

● If α is close to 1, we’re 
requiring the trees to be very 
tightly balanced. Therefore, 
when an imbalance occurs, 
we’d expect (⚖ v) to be small 
relative to size(v).

● If α is large, we’re allowing for 
huge imbalances in the trees. 
Therefore, when a node is too 
deep, we expect the tree it’s a 
part of to be highly 
imbalanced, so we’d expect 

(⚖ v) to be large relative to 
size(v).



  

Analyzing Scapegoat Trees

● We’ve just concluded that 

⚖(v) > size(v) · (21 – 1/α – 1)

● Notice that for any Exed 
value of α that we have

⚖(v) = Ω(size(v)).

● In other words, the 
scapegoat node always has 
an imbalance that is (at 
least) linear in the size of its 
subtree.

● We can then backcharge the 
linear work required to 
optimally rebuild it to the 
operations that caused the 
imbalance in the Erst place.



  

Analyzing Scapegoat Trees

● We can now work out the amortized cost of an 
insertion that triggers a rebuild.

● Actual cost of inserting a new node: O(log n).

● Actual cost of rebuilding at the scapegoat node: 
O(size(v)).

● Change in potential: ΔΦ < -Ω(size(v)).

● Amortized cost:

O(log n) + O(size(v)) – k · Ω(size(v)).

● By tuning k based on the hidden constant factors 
in the O and Ω terms, we can get them to cancel, 
leaving an amortized cost of O(log n).



  

Where We Stand

● Here’s the current scorecard for 
scapegoat trees.

● Intuitively:

● If you pick α to be smaller, you get 
a more balanced tree (faster 
lookups), but the overhead to 
optimally rebuild subtrees gets 
bigger (slower insertions).

● If you pick α to be larger, you get a 
less balanced tree (slower lookups), 
but the overhead to optimally 
rebuild trees is smaller (faster 
insertions).

● Tuning α appropriately now 
becomes a matter of 
engineering.

● Question: What about deletions?

Scapegoat Tree

 Lookup: O(log n)

 Insert:  O(log n)*

* amortized



  

Why Deletions are DiPerent

● In the insert-only case, we can 
easily detect when the height is 
violated, and we know which 
node exceeded the height limit.

● Neither of these are true with 
deletions.

● Deleting one node may make an 
unrelated node height above the 
threshold.

● Deleting one node may make 
multiple unrelated nodes exceed 
the threshold.

● Intuition: Deletions will 
require some sort of global 
rebuilding of the tree, rather 
than the local rebuilding we 
saw earlier.
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Why Deletions are DiPerent

● As we delete nodes 
from our BST, the 
value of α lg n will 
decrease, but it does 
so slowly.

● Leaf nodes will be the 
Erst to exceed the 
α lg n threshold.

● However, a very large 
number of nodes need 
to be deleted before 
non-leaves cross the 
threshold.

● Let’s quantify this.

36

31

21

1

11

166

lg n                                                              

α lg n                                                                 



  

Why Deletions are DiPerent

● Suppose our tree currently has n nodes in it. We’ll perform 
some number of deletions and arrive at a tree with nnew nodes.

● At what value of nnew is it possible for non-leaf nodes to have a 
depth greater than α lg nnew?

● We need to solve

α lg nnew < α lg n – 1.

● Rearranging gives us that

nnew < n · 2-1/α.

● Note that 2-1/α ∈ (½, 1) for any α > 1.

● We need to delete at least a constant fraction (speciEcally, a 
1 – 2-1/α fraction) of the nodes before nodes one layer above 
the bottom could exceed the α lg n limit.



  

Why Deletions are DiPerent

● Idea: Don’t worry about 
rebalancing until we lose a 
(1 – 2-1/α) fraction of the nodes.

● Assuming we lose fewer than 
this many nodes, all nodes in the 
tree will be at depth at most 
α lg n + 1.

● Focus on any node. Assume there 
were n₀ nodes at the point when 
the node was inserted. The node 
depth is then at most α lg n₀.

● As long as we haven’t lost at least 
a (1 – 2-1/α) fraction of the nodes, 
the current value of n is such that 
α lg n ≥ α lg n₀ – 1.

● This still gives us lookups that 
run in time O(log n), and 
insertions still work properly.
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Why Deletions are DiPerent

● Once we’ve lost a (1 – 2-1/α) 
fraction of the nodes, we 
need to worry about 
rebalancing the tree.

● We won’t know much 
about the tree shape.

● It could have a large 
number of deep nodes.

● It could be perfectly 
balanced.

● Idea: Don’t try to analyze 
the tree. Just rebuild the 
entire tree from 
scratch. "
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Scapegoat Tree Deletions

● Here’s how this approach will work.

● Keep track of the maximum number of nodes the tree 
has had since it was last globally rebuilt. (Call this nmax).

● If the number of nodes drops to a nmax · 2-1/α, globally 
rebuild the tree as a perfectly balanced tree, then reset 
nmax to the current tree size.

● Although rebuilding the tree is an expensive 
operation, intuitively we expect to be able to 
“backcharge” the work to the lazy delete 
operations that triggered it.



  

Scapegoat Tree Deletions

● Our goal now is to work out the amortized cost of doing 
global rebuilds on deletions.

● Recall: Our current potential function is

Φ = Σᵥ ’(⚖ v),

which we chose to make the cost of local rebuilds on 
insertions amortize away.

● We need to adjust this potential function to account for the 
fact that deleted nodes slowly lead us to do a global rebuild 
of the whole tree.

● Idea: Change our potential to

Φ = D + Σᵥ ’(⚖ v),

where D is the number of deletions that have been 
performed since we last did a global rebuild.



  

Scapegoat Tree Deletions

● What is the amortized cost of a deletion when we don’t 
trigger a global rebuild?

● Actual cost: O(log n), since the tree height is at most 
α lg n + 1.

● Change in potential (recall that Φ = D + Σᵥ  ’(⚖ v)):

● D increases by one, since we’ve performed a deletion.

● ’⚖ (v) changes by at most two for each node on the access path of 
the removed node, and there are O(log n) such nodes.

● Net change: O(log n).

● Amortized cost:

O(log n) + k · O(log n) = O(log n).



  

Scapegoat Tree Deletions

● What is the amortized cost of a deletion when we do trigger a 
global rebuild?

● We picked

Φ = D + Σᵥ ’(⚖ v).

● After the rebuild, we have Σᵥ ’(⚖ v) = 0. Therefore, there is an 
unknown but nonpositive change in potential for this term.

● How much does D change?

● At the point where we start the rebuild, we have n = nmax · 2-1/α nodes 
left in the tree.

● This means that D ≥ nmax · (1 – 2-1/α).

● Rewriting in terms of n, this means D ≥ n · (21/α – 1) = Ω(n).

● Since after this step we drop D to zero, we have ΔD ≤ -Ω(n).

● Overall, we have ΔΦ ≤ -Ω(n).



  

Scapegoat Tree Deletions

● Actual cost of the deletion:

● O(log n) for the actual deletion logic.

● O(n) to rebuild the tree.

● Amortized cost:

O(log n) + O(n) – k · Ω(n).

● As before, we can tune k based on the 
hidden constant factors in the O and Ω 
terms to make them cancel out and leave 
behind an amortized cost of O(log n).



  

The Final Scorecard

● Here’s the Enal 
scorecard for our 
scapegoat tree.

● It matches the time 
bounds we’d expect of a 
red/black tree, in an 
amortized sense, with a 
dramatically simpler 
implementation.

● This gives a sense of 
just how useful a 
technique amortization 
can be!

Scapegoat Tree

 Lookup: O(log n)

 Insert:  O(log n)*

 Delete: O(log n)*

* amortized



  

Further Exploration

● I haven’t seen much work done into building an optimized scapegoat tree 
implementation. How fast can you make this idea work? Is it competitive with a 
red/black tree?

● We’ve treated α as a constant. What if you allow it to vary based on the work�ow (say, 
decreasing it as more lookups happen and increasing it as more deletions/insertions 
happen)? A past CS166 project team looked into this in 2014, and I’m curious to see it on 
modern hardware.

● Are there other, less aggressive strategies besides rebuilding the scapegoat subtree that 
can be used to restore balance?

● Are there other ways of picking a scapegoat node that work better in practice? For 
example, could you pick a scapegoat higher up in the tree that would do a better job 
rebalancing things?

● What is the practical time/space tradeoP between the two approaches for calculating 
size(v) when Ending a scapegoat?

● The version of scapegoat trees described here is a hybrid between two approaches: the 
original developed by Galperin and Rivest and a simpliEcation by JeP Erickson. The 
Galperin/Rivest version has tighter structural constraints, while Erickson’s version uses 
a diPerent deletion strategy. Can you remix this ideas in other ways?

● Because there are no rotations, it should be way easier to augment a scapegoat tree 
than it is to augment a red/black tree. Can you End a weaker set of requirements for 
augmenting a BST if you assume the tree you’re augmenting is a scapegoat tree?



  

Next Time

● Tournament Heaps

● A simple and fast priority queue.

● Lazy Tournament Heaps

● An asymptotically faster priority queue.



  

Scapegoat Trees



  

Outline for Today

● Recap from Last Time

● What is amortization, again?

● Lazy Balanced Trees

● Messes are okay, up to a point.

● Lazy Tree Insertions

● Deferring updates until they’re needed.

● Lazy Tree Deletions

● And some associated subtleties.



  

Recap from Last Time



  

Amortized Analysis

● We will assign amortized costs to each operation such that

● To do so, deEne a potential function Φ such that

● Φ measures how “messy” the data structure is,

● Φstart = 0, and

● Φ ≥ 0.

● Then, deEne amortized costs of operations as

amortized-cost = real-cost + k · ΔΦ

for a choice of k under our control.

● Intuitively:

● If an operation makes a mess that needs to be cleaned up later, its 
amortized cost will be higher than its original cost.

● If an operation cleans up a mess, its amortized cost will be lower than its 
real cost.

∑ amortized -cost ≥ ∑ real-cost



  

New StuP!



  

Balanced Trees

● The red/black trees we explored earlier are 
worst-case ePicient and guaranteed to have a 
height of O(log n).

● However, explaining how they work and deriving 
the basic insertion rules took two lectures – and 
we still didn’t Enish covering all cases.

● Goal for today: Find a simpler way to keep a 
tree balanced, under the assumption we’re okay 
with amortized-ePicient rather than worst-case 
ePicient lookups.



  

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0 
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a 
single insertion or deletion might require a lot of 
node reshu_ing.
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On O(log n) Height

● A perfectly-balanced binary search tree with n > 0 
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a 
single insertion or deletion might require a lot of 
node reshu_ing.
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On O(log n) Height

● To speed up logic after insertions or deletions, most balanced 
BSTs only guarantee height of multiple of lg n.

● For example, red/black trees have height at most (roughly) 
2 lg n in the worst case.



  

On O(log n) Height

● We’re already comfortable with trees 
whose heights are α lg n for some α > 1.

● Question: Can we design a balanced 
tree purely based on this restriction, 
without any other structural constraints?



  

Adding Slack Space

● Pick a Exed constant 
α > 1.

● Set the maximum 
height on our tree to 
α lg n.

● As long as we don’t 
exceed this maximum 
height, all operations 
on our BST will run 
in time O(log n), and 
we don’t really care 
about the shape of 
the tree.
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Adding Slack Space

● Pick a Exed constant 
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Adding Slack Space

● Pick a Exed constant 
α > 1.

● Set the maximum 
height on our tree to 
α lg n.

● As long as we don’t 
exceed this maximum 
height, all operations 
on our BST will run 
in time O(log n), and 
we don’t really care 
about the shape of 
the tree.
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Adding Slack Space

● For each node v in our 
BST, let size(v) denote 
the number of nodes in 
the subtree rooted at v 
and height(v) denote the 
height of the subtree 
rooted at v.

● We’ll say that a node v is
α-balanced if

height(v) ≤ α lg size(v).

● Intuitively, a α-balanced 
node is the root of a 
subtree whose height is 
within a factor of α of 
optimal.
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Adding Slack Space

● Suppose, however, that 
after doing an 
insertion, our tree 
exceeds α lg n.

● At this point, we need 
to do some sort of 
“cleanup” on the tree 
to pull it back to a 
reasonable height.

● Ideally, we’ll want to 
minimize the amount of 
cleanup we need to do 
so that this step will 
run quickly.
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Scapegoat Nodes

● Look at the access path from 
the root node to the newly-
inserted node.

● We know the root node is not
α-balanced, since the overall 
tree is too tall.

● We also know that the newly-
inserted node is α-balanced, 
since it has no children.

● Therefore, there has to be 
some deepest node on the 
access path that isn’t α-
balanced.

● We can “blame” the imbalance 
in the overall tree on this 
subtree. The node chosen this 
way is called the scapegoat.
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Scapegoat Nodes

● We know that the 
subtree rooted at the 
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree 
as a perfectly-balanced 
BST.

● This will reduce the 
height of the subtree, 
which in turn restores 
the requirement that 
the height be at most 
α lg n.
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Scapegoat Trees

● A scapegoat tree is a 
balanced binary search 
tree that works as follows:

● Pick some constant α > 1.

● As long as the tree height is 
below α lg n, don’t do any 
rebalancing after 
insertions.

● Once the tree exceeds that 
height, End the scapegoat 
(the deepest α-imbalanced 
node on the insertion path).

● Then, optimally rebuild the 
subtree rooted at that node.

● All that’s left now is to 
work through the details.
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Scapegoat Trees

● Questions we need to 
address:

● How do we know that 
optimally rebuilding the 
scapegoat’s subtree will Ex 
the tree height?

● How quickly can we optimally 
rebuild the subtree rooted at 
the scapegoat node?

● How do we End the scapegoat 
node?

● In an amortized sense, how 
fast is this strategy?

● Let’s address each of these 
in turn.
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The Impact of Rebuilding



  

Scapegoat Rebuilding

● Our strategy relies on the following 
claim:

Optimally rebuilding the subtree 
rooted at the scapegoat node ensures 
that, as a whole, the tree has height 

at most α lg n.

● This turns out to not be too diPicult to 
prove. Let’s break it down into pieces.
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Scapegoat Rebuilding

● Suppose we insert a node that 
causes the α lg n size limit to 
be violated.

● Just before we inserted that 
node, all other nodes in the 
tree were at height α lg n or 
below.

● That means each other node is 
at depth ⌊α lg n⌋, and our new 
node is at depth ⌊α lg n⌋ + 1.

● Now, look at the scapegoat 
node and its subtree.

● Because our oPending node is 
only one level too deep, we 
just need to show that 
optimally rebuilding the 
scapegoat subtree reduces its 
depth by at least one.
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Scapegoat Rebuilding

● Let v be our scapegoat node. Since it’s not α-balanced, we 
know that

heightbefore(v) > α lg size(v).

● Let r be the root of the subtree we get after rebuilding at v. 
Because we rebuilt v’s tree perfectly, we know that

lg size(v) ≥ heightafter(r).

● Putting this together gives us that

heightbefore(v) > α lg size(v) > lg size(v) ≥ heightafter(r).

● This means that

heightbefore(v) > heightafter(r).

● Therefore, the height of v’s subtree after rebuilding has 
decreased by at least one, so overall balance is restored.



  

The Cost of Rebuilding



  

The Cost of Rebuilding

● Once we’ve identiEed the scapegoat 
node, we need to rebuild the subtree 
rooted at that node as a perfectly-
balanced BST.

● How quickly can we do this?



  

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of 
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and 
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the 
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v)) 
because there are size(v) nodes visited, and the recursive algorithm 
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but 
others exist that are faster in practice or more space-ePicient. 
Look up the Galperin-Rivest or Day-Stout-Warren algorithms 
for other ways to do this in time O(size(v)) in less space.
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Finding the Scapegoat

● Recall: The 
scapegoat node is 
the deepest node 
on the access path 
that isn’t α-
balanced.

● How ePiciently can 
we identify this 
node?

31

21

1

11

16

α lg n                                                                 

6

26

36

41

46

56

52 61

5351

48



  

lg n                                                              

Finding the Scapegoat

● We need to check if 
height(v) > α lg size(v).

● Observation: For 
each node v on the 
access path, height(v) 
is the number of steps 
between v and the 
newly-added node.

● This can be computed 
by counting upward 
from the new node.

● That just leaves 
computing size(v).
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Finding the Scapegoat

● There are two ways we can 
compute size(v) for the 
nodes on the access path.

● Approach 1: Augment 
each node with the number 
of nodes in its subtree.

● (This can be done without 
changing the cost of an 
insertion or deletion.)

● We can then read size(v) by 
looking at the cached value.

● This has the disadvantage 
of requiring an extra 
integer in each node of the 
tree.
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Finding the Scapegoat

● Approach 2: Compute 
these values bottom-up.

● Start with a total of 1 for 
the newly-added node.

● Each time we move 
upward a step, run a DFS 
in the opposite subtree to 
count the number of 
nodes there.

● Once we hit the 
scapegoat node v, we’ll 
have done O(size(v)) total 
work counting nodes.
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Finding the Scapegoat

● Approach 1 does less 
work, but requires more 
storage in each node.

● Approach 2 does more 
work, but means each 
node just stores data 
and two child pointers.

● Which of these ends up 
being more important 
depends on a mix of 
engineering constraints 
and personal 
preference.
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Analyzing EPiciency

● Based on what we’ve seen so far, the cost of an 
insertion is

● O(log n) if the insertion keeps us below the α lg n 
height threshold, and

● O(log n + size(v)) if we have to rebuild v as a 
scapegoat.

● The size(v) term can be as large as n, which may 
happen if the whole tree has to be rebuilt.

● However, it turns out that we can amortize this 
size(v) term away.



  

Analyzing EPiciency

● Recall: To perform an amortized analysis, we do 
the following:

● Find a potential function Φ that, intuitively, is small 
when the data structure is “clean” and large when the 
data structure is “messy.”

● Compute the value of ΔΦ = Φafter – Φbefore for each 
operation.

● Assign amortized costs as

amortized-cost = real-cost + k · ΔΦ

for some constant k we get to pick.

● Our Erst step is to End a choice of Φ that’s large 
when our tree is imbalanced and small when it’s 
balanced.



  

Quantifying Imbalance

● Right before we rebuild a scapegoat subtree, 
that tree is α-imbalanced.

● Right after we rebuild a scapegoat subtree, 
that tree is perfectly balanced.

● Goal: Find a choice of Φ for our tree so that

● perfectly-balanced trees have low Φ, and

● α-imbalanced trees have high Φ.

● At this point, we need to do some exploring to 
see what we End.



  

Quantifying Imbalance

● When we talk about “perfectly balanced” trees, what 
exactly is this “balance” in reference to?

● Intuition 1: A perfectly balanced tree is one where each 
node has roughly the same number of children in its left 
subtree as in its right subtree.

● Intuition 2: An “imbalanced” tree will have nodes whose 
left and right subtrees have diPering numbers of nodes.
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Quantifying Imbalance

● For each node v, deEne the imbalance of 
the node as

⚖(v) = |size(v.left) – size(v.right)|.

● This gives us a quantitative measure of our 
more nebulous concept of “imbalance.”
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DeEning our Potential

● We’re looking for a potential function Φ where

● a perfectly-balanced tree has low Φ, and

● an imbalanced tree has progressively higher Φ.

● A balanced tree has (⚖ v) low for all its nodes.

● An imbalanced tree has (⚖ v) high for many nodes.

● Initial Idea: DeEne Φ = Σv (⚖ v).
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DeEning our Potential

● We’ve set Φ = Σv (⚖ v).

● What is Φ for the three trees shown below?
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DeEning our Potential

● We’ve set Φ = Σv (⚖ v).
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DeEning our Potential

● Observation 1: Two trees that Ell their rows as 
ePiciently as possible may have diPerent potentials.

● This means that when we rebalance trees, we need 
to make sure to equalize the number of nodes in 
the left and right subtrees of each node.
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DeEning our Potential

● Observation 2: The potential of a perfectly-balanced 
tree can grow as a function of its number of nodes.

● Ideally, both of these trees should have potential 0, 
indicating “perfectly balanced.” The potential 
shouldn’t depend on the number of nodes in the tree.
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DeEning our Potential

● To account for otherwise balanced trees 
with extra nodes in their bottom layers, 
let’s deEne ’(⚖ v) as

● ’⚖ (v) = 0 if (⚖ v) ≤ 1.

● ’⚖ (v) = (⚖ v) otherwise.

● Revised Idea: Set Φ = Σᵥ ’⚖ (v).



  

De#ning our Potential

● We’re now using Φ = Σv ’(⚖ v).

● What is Φ for the three trees shown below?

● Intuition: If a subtree rooted at v is perfectly 
balanced, then ’(⚖ v) = 0.
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Analyzing Scapegoat Trees

● Now that we have a de#nition of Φ, we can 
look at the amortized cost of an insertion.

● We need to consider two cases:

● Case 1: The insertion doesn’t trigger a rebuild.

● Case 2: The insertion triggers a rebuild.

● Intuitively, we’re hoping that Case 1 has a 
small positive ΔΦ (messes accumulate 
slowly) and that Case 2 has a large negative 
ΔΦ (messes get cleaned up quickly).

● Let’s run the numbers!



  

Analyzing Scapegoat Trees

● Case 1: Our insertion does not trigger a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we get to pick.

● We’re inserting into a tree of height at most α lg n, so our
real-cost is O(log n).

● When we insert the node, it changes (⚖ v) by ±1 for each 
node v on its access path.

● There are O(log n) nodes on this access path, and (⚖ v) 
increases by at most one for each of those nodes. This means 

’(⚖ v) increases by at most two for each of those nodes.

● Therefore, ΔΦ = O(log n).

● Amortized cost: O(log n) + k · O(log n) = O(log n).

What are real-cost and ΔΦ,
as a function of n?

Formulate a hypothesis! 



  

Analyzing Scapegoat Trees

● Case 1: Our insertion does not trigger a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we get to pick.

● We’re inserting into a tree of height at most α lg n, so our
real-cost is O(log n).

● When we insert the node, it changes (⚖ v) by ±1 for each 
node v on its access path.

● There are O(log n) nodes on this access path, and (⚖ v) 
increases by at most one for each of those nodes. This means 

’(⚖ v) increases by at most two for each of those nodes.

● Therefore, ΔΦ = O(log n).

● Amortized cost: O(log n) + k · O(log n) = O(log n).

What are real-cost and ΔΦ,
as a function of n?

Discuss with your neighbors! 



  

Analyzing Scapegoat Trees

● Case 1: Our insertion does not trigger a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we get to pick.

● We’re inserting into a tree of height at most α lg n, so our
real-cost is O(log n).

● When we insert the node, it changes (⚖ v) by ±1 for each 
node v on its access path.

● There are O(log n) nodes on this access path, and (⚖ v) 
increases by at most one for each of those nodes. This means 

’(⚖ v) increases by at most two for each of those nodes.

● Therefore, ΔΦ = O(log n).

● Amortized cost: O(log n) + k · O(log n) = O(log n).



  

Analyzing Scapegoat Trees

● Case 1: Our insertion does 
not trigger a rebuild.

● In this case, ΔΦ = O(log n).

● Focus on any one of the 
new node’s ancestors.

● If we rebuild the subtree 
rooted at that node in the 
future, we have to do some 
work to move the new node.

● Intuition: The O(log n) 
added potential 
corresponds to paying O(1) 
work in advance to each of 
O(log n) future rebuilds.
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Analyzing Scapegoat Trees

● Case 2: Our insertion triggers a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we pick.

● Here, real-cost is O(log n + size(v)), where v is the 
scapegoat node.

● The O(log n) comes from the cost of the actual insertion.

● The O(size(v)) is for the cost of rebuilding.

● For this to amortize away, we need ΔΦ to be -Ω(size(v)).

● Our previous intuition tells us this should be the case.

● Let’s run the numbers to check.



  

Analyzing Scapegoat Trees

● Let v be the scapegoat 
node. We’re interested in 

(⚖ v).

● One of v’s children is a 
tree containing our 
newly-inserted node. 
Call that subtree x.

● Call v’s other child y.

● Goal: Determine
(⚖ v) = |size(x) – size(y)|.

v

x y



  

Since α > 1,
we know that
21/α ∈ (1, 2)

Analyzing Scapegoat Trees

● Since v is α-imbalanced, we 
know

height(v) > α lg size(v).

● v is the deepest α-imbalanced 
node on the access path. This 
means x is α-balanced, so

height(x) ≤ α lg size(x).

● Since the newly-inserted node is 
the deepest node in v’s subtree, 
we know that

height(v) = height(x) + 1.

● Putting all this together gives

α lg size(v) < α lg size(x) + 1.

● That in turn means that

size(v) < size(x) · 21/α.
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Analyzing Scapegoat Trees

● We just proved that

size(v) < size(x) · 21/α.

● We also know that

size(v) = 1 + size(x) + size(y).

● That means

size(x) + size(y) < size(x) · 21/α.

● Therefore,

size(y) < size(x) · (21/α – 1).

● This means that

 ⚖(v) = |size(x) – size(y)|
        > size(x) – size(x) · (21/α – 1)
        = size(x) · (2 – 21/α).

● Combined with the initial 
inequality, this gives us that

⚖(v) > size(v) · (21 – 1/α – 1).

v

x y

Since 21/α ∈ (1, 2), we
know 21/α – 1 ∈ (0, 1).

 

So y must have
fewer nodes than x.

 

(Surprising, but true!
Explore and see why!)



  

Analyzing Scapegoat Trees

● We just proved that

size(v) < size(x) · 21/α.

● We also know that

size(v) = 1 + size(x) + size(y).

● That means

size(x) + size(y) < size(x) · 21/α.

● Therefore,

size(y) < size(x) · (21/α – 1).

● This means that

 ⚖(v) = |size(x) – size(y)|
        > size(x) – size(x) · (21/α – 1)
        = size(x) · (2 – 21/α).

● Combined with the initial 
inequality, this gives us that

⚖(v) > size(v) · (21 – 1/α – 1).

v

x y

21 – 1/α ∈ (1, 2),
So 21 – 1/α – 1 ∈ (0, 1).



  

Analyzing Scapegoat Trees

● We’ve just concluded that 

⚖(v) > size(v) · (21 – 1/α – 1)

● Let’s take a minute to check 
our math.

● If α is close to 1, we’re 
requiring the trees to be very 
tightly balanced. Therefore, 
when an imbalance occurs, 
we’d expect (⚖ v) to be small 
relative to size(v).

● If α is large, we’re allowing for 
huge imbalances in the trees. 
Therefore, when a node is too 
deep, we expect the tree it’s a 
part of to be highly 
imbalanced, so we’d expect 

(⚖ v) to be large relative to 
size(v).



  

Analyzing Scapegoat Trees

● We’ve just concluded that 

⚖(v) > size(v) · (21 – 1/α – 1)

● Notice that for any #xed 
value of α that we have

⚖(v) = Ω(size(v)).

● In other words, the 
scapegoat node always has 
an imbalance that is (at 
least) linear in the size of its 
subtree.

● We can then backcharge the 
linear work required to 
optimally rebuild it to the 
operations that caused the 
imbalance in the #rst place.



  

Analyzing Scapegoat Trees

● We can now work out the amortized cost of an 
insertion that triggers a rebuild.

● Actual cost of inserting a new node: O(log n).

● Actual cost of rebuilding at the scapegoat node: 
O(size(v)).

● Change in potential: ΔΦ < -Ω(size(v)).

● Amortized cost:

O(log n) + O(size(v)) – k · Ω(size(v)).

● By tuning k based on the hidden constant factors 
in the O and Ω terms, we can get them to cancel, 
leaving an amortized cost of O(log n).



  

Where We Stand

● Here’s the current scorecard for 
scapegoat trees.

● Intuitively:

● If you pick α to be smaller, you get 
a more balanced tree (faster 
lookups), but the overhead to 
optimally rebuild subtrees gets 
bigger (slower insertions).

● If you pick α to be larger, you get a 
less balanced tree (slower lookups), 
but the overhead to optimally 
rebuild trees is smaller (faster 
insertions).

● Tuning α appropriately now 
becomes a matter of 
engineering.

● Question: What about deletions?

Scapegoat Tree

 Lookup: O(log n)

 Insert:  O(log n)*

* amortized



  

Why Deletions are Direrent

● In the insert-only case, we can 
easily detect when the height is 
violated, and we know which 
node exceeded the height limit.

● Neither of these are true with 
deletions.

● Deleting one node may make an 
unrelated node height above the 
threshold.

● Deleting one node may make 
multiple unrelated nodes exceed 
the threshold.

● Intuition: Deletions will 
require some sort of global 
rebuilding of the tree, rather 
than the local rebuilding we 
saw earlier.
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Why Deletions are Direrent
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Why Deletions are Direrent

● As we delete nodes 
from our BST, the 
value of α lg n will 
decrease, but it does 
so slowly.

● Leaf nodes will be the 
#rst to exceed the 
α lg n threshold.

● However, a very large 
number of nodes need 
to be deleted before 
non-leaves cross the 
threshold.

● Let’s quantify this.

36

31

21

1

11

166

lg n                                                              

α lg n                                                                 



  

Why Deletions are Direrent

● Suppose our tree currently has n nodes in it. We’ll perform 
some number of deletions and arrive at a tree with nnew nodes.

● At what value of nnew is it possible for non-leaf nodes to have a 
depth greater than α lg nnew?

● We need to solve

α lg nnew = α lg n – 1.

● Rearranging gives us that

nnew = n · 2-1/α.

● Note that 2-1/α ∈ (½, 1) for any α > 1.

● We need to delete a constant fraction (speci#cally, a 1 – 2-1/α 
fraction) of the nodes before nodes one layer above the 
bottom exceed the α lg n limit.



  

Why Deletions are Direrent

● Suppose our tree currently has n nodes in it. We’ll perform 
some number of deletions and arrive at a tree with nnew nodes.

● At what value of nnew is it possible for non-leaf nodes to have a 
depth greater than α lg nnew?

● We need to solve

α lg nnew = α lg n – 1.

● Rearranging gives us that

nnew = n · 2-1/α.

● Note that 2-1/α ∈ (½, 1) for any α > 1.

● We need to delete a constant fraction (speci#cally, a 1 – 2-1/α 
fraction) of the nodes before nodes one layer above the 
bottom exceed the α lg n limit.

… …

α lg n                                                                                                        

α lg nnew                                                                                                              



  

Why Deletions are Direrent

● Suppose our tree currently has n nodes in it. We’ll perform 
some number of deletions and arrive at a tree with nnew nodes.

● At what value of nnew is it possible for non-leaf nodes to have a 
depth greater than α lg nnew?

● We need to solve

α lg nnew < α lg n – 1.

● Rearranging gives us that

nnew < n · 2-1/α.

● Note that 2-1/α ∈ (½, 1) for any α > 1.

● We need to delete at least a constant fraction (speci#cally, a 
1 – 2-1/α fraction) of the nodes before nodes one layer above 
the bottom could exceed the α lg n limit.



  

Why Deletions are Direrent

● Idea: Don’t worry about 
rebalancing until we lose a 
(1 – 2-1/α) fraction of the nodes.

● Assuming we lose fewer than 
this many nodes, all nodes in the 
tree will be at depth at most 
α lg n + 1.

● Focus on any node. Assume there 
were n₀ nodes at the point when 
the node was inserted. The node 
depth is then at most α lg n₀.

● As long as we haven’t lost at least 
a (1 – 2-1/α) fraction of the nodes, 
the current value of n is such that 
α lg n ≥ α lg n₀ – 1.

● This still gives us lookups that 
run in time O(log n), and 
insertions still work properly.
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Why Deletions are Direrent

● Once we’ve lost a (1 – 2-1/α) 
fraction of the nodes, we 
need to worry about 
rebalancing the tree.

● We won’t know much 
about the tree shape.

● It could have a large 
number of deep nodes.

● It could be perfectly 
balanced.

● Idea: Don’t try to analyze 
the tree. Just rebuild the 
entire tree from 
scratch. "
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Scapegoat Tree Deletions

● Here’s how this approach will work.

● Keep track of the maximum number of nodes the tree 
has had since it was last globally rebuilt. (Call this nmax).

● If the number of nodes drops to a nmax · 2-1/α, globally 
rebuild the tree as a perfectly balanced tree, then reset 
nmax to the current tree size.

● Although rebuilding the tree is an expensive 
operation, intuitively we expect to be able to 
“backcharge” the work to the lazy delete 
operations that triggered it.



  

Scapegoat Tree Deletions

● Our goal now is to work out the amortized cost of doing 
global rebuilds on deletions.

● Recall: Our current potential function is

Φ = Σᵥ ’(⚖ v),

which we chose to make the cost of local rebuilds on 
insertions amortize away.

● We need to adjust this potential function to account for the 
fact that deleted nodes slowly lead us to do a global rebuild 
of the whole tree.

● Idea: Change our potential to

Φ = D + Σᵥ ’(⚖ v),

where D is the number of deletions that have been 
performed since we last did a global rebuild.



  

Scapegoat Tree Deletions

● What is the amortized cost of a deletion when we don’t 
trigger a global rebuild?

● Actual cost: O(log n), since the tree height is at most 
α lg n + 1.

● Change in potential (recall that Φ = D + Σᵥ  ’(⚖ v)):

● D increases by one, since we’ve performed a deletion.

● ’⚖ (v) changes by at most two for each node on the access path of 
the removed node, and there are O(log n) such nodes.

● Net change: O(log n).

● Amortized cost:

O(log n) + k · O(log n) = O(log n).



  

Scapegoat Tree Deletions

● What is the amortized cost of a deletion when we do trigger a 
global rebuild?

● We picked

Φ = D + Σᵥ ’(⚖ v).

● After the rebuild, we have Σᵥ ’(⚖ v) = 0. Therefore, there is an 
unknown but nonpositive change in potential for this term.

● How much does D change?

● At the point where we start the rebuild, we have n = nmax · 2-1/α nodes 
left in the tree.

● This means that D ≥ nmax · (1 – 2-1/α).

● Rewriting in terms of n, this means D ≥ n · (21/α – 1) = Ω(n).

● Since after this step we drop D to zero, we have ΔD ≤ -Ω(n).

● Overall, we have ΔΦ ≤ -Ω(n).



  

Scapegoat Tree Deletions

● Actual cost of the deletion:

● O(log n) for the actual deletion logic.

● O(n) to rebuild the tree.

● Amortized cost:

O(log n) + O(n) – k · Ω(n).

● As before, we can tune k based on the 
hidden constant factors in the O and Ω 
terms to make them cancel out and leave 
behind an amortized cost of O(log n).



  

The Final Scorecard

● Here’s the #nal 
scorecard for our 
scapegoat tree.

● It matches the time 
bounds we’d expect of a 
red/black tree, in an 
amortized sense, with a 
dramatically simpler 
implementation.

● This gives a sense of 
just how useful a 
technique amortization 
can be!

Scapegoat Tree

 Lookup: O(log n)

 Insert:  O(log n)*

 Delete: O(log n)*

* amortized



  

Further Exploration

● I haven’t seen much work done into building an optimized scapegoat tree 
implementation. How fast can you make this idea work? Is it competitive with a 
red/black tree?

● We’ve treated α as a constant. What if you allow it to vary based on the work{ow (say, 
decreasing it as more lookups happen and increasing it as more deletions/insertions 
happen)? A past CS166 project team looked into this in 2014, and I’m curious to see it on 
modern hardware.

● Are there other, less aggressive strategies besides rebuilding the scapegoat subtree that 
can be used to restore balance?

● Are there other ways of picking a scapegoat node that work better in practice? For 
example, could you pick a scapegoat higher up in the tree that would do a better job 
rebalancing things?

● What is the practical time/space tradeor between the two approaches for calculating 
size(v) when #nding a scapegoat?

● The version of scapegoat trees described here is a hybrid between two approaches: the 
original developed by Galperin and Rivest and a simpli#cation by Jer Erickson. The 
Galperin/Rivest version has tighter structural constraints, while Erickson’s version uses 
a direrent deletion strategy. Can you remix this ideas in other ways?

● Because there are no rotations, it should be way easier to augment a scapegoat tree 
than it is to augment a red/black tree. Can you #nd a weaker set of requirements for 
augmenting a BST if you assume the tree you’re augmenting is a scapegoat tree?



  

Next Time

● Tournament Heaps

● A simple and fast priority queue.

● Lazy Tournament Heaps

● An asymptotically faster priority queue.
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