

Scapegoat Trees

Outline for Today

● Recap from Last Time

● What is amortization, again?

● Lazy Balanced Trees

● Messes are okay, up to a point.

● Lazy Tree Insertions

● Deferring updates until they’re needed.

● Lazy Tree Deletions

● And some associated subtleties.

Recap from Last Time

Amortized Analysis

● We will assign amortized costs to each operation such that

● To do so, deEne a potential function Φ such that

● Φ measures how “messy” the data structure is,

● Φstart = 0, and

● Φ ≥ 0.

● Then, deEne amortized costs of operations as

amortized-cost = real-cost + k · ΔΦ

for a choice of k under our control.

● Intuitively:

● If an operation makes a mess that needs to be cleaned up later, its
amortized cost will be higher than its original cost.

● If an operation cleans up a mess, its amortized cost will be lower than its
real cost.

∑ amortized -cost ≥ ∑ real-cost

New StuP!

Balanced Trees

● The red/black trees we explored earlier are
worst-case ePicient and guaranteed to have a
height of O(log n).

● However, explaining how they work and deriving
the basic insertion rules took two lectures – and
we still didn’t Enish covering all cases.

● Goal for today: Find a simpler way to keep a
tree balanced, under the assumption we’re okay
with amortized-ePicient rather than worst-case
ePicient lookups.

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3

5

13

17

22 25

23

29 35

33

11 27

21

199

On O(log n) Height

● To speed up logic after insertions or deletions, most balanced
BSTs only guarantee height of multiple of lg n.

● For example, red/black trees have height at most (roughly)
2 lg n in the worst case.

On O(log n) Height

● We’re already comfortable with trees
whose heights are α lg n for some α > 1.

● Question: Can we design a balanced
tree purely based on this restriction,
without any other structural constraints?

Adding Slack Space

● Pick a Exed constant
α > 1.

● Set the maximum
height on our tree to
α lg n.

● As long as we don’t
exceed this maximum
height, all operations
on our BST will run
in time O(log n), and
we don’t really care
about the shape of
the tree.

36

31 41

46

61

56

51

21

1

11

16

α lg n

6

26

lg n

Adding Slack Space

● For each node v in our
BST, let size(v) denote
the number of nodes in
the subtree rooted at v
and height(v) denote the
height of the subtree
rooted at v.

● We’ll say that a node v is
α-balanced if

height(v) ≤ α lg size(v).

● Intuitively, a α-balanced
node is the root of a
subtree whose height is
within a factor of α of
optimal.

36

31 41

46

61

56

51

21

1

11

16

α lg n

6

26

lg n

Adding Slack Space

● Suppose, however, that
after doing an
insertion, our tree
exceeds α lg n.

● At this point, we need
to do some sort of
“cleanup” on the tree
to pull it back to a
reasonable height.

● Ideally, we’ll want to
minimize the amount of
cleanup we need to do
so that this step will
run quickly.

36

31 41

46

61

56

51

21

1

11

16

α lg n

6

26

53

lg n

lg n

Scapegoat Nodes

● Look at the access path from
the root node to the newly-
inserted node.

● We know the root node is not
α-balanced, since the overall
tree is too tall.

● We also know that the newly-
inserted node is α-balanced,
since it has no children.

● Therefore, there has to be
some deepest node on the
access path that isn’t α-
balanced.

● We can “blame” the imbalance
in the overall tree on this
subtree. The node chosen this
way is called the scapegoat.

31

21

1

11

16

α lg n

6

26

36

41

46

61

56

51

53

lg n

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

46

61

56

51

53

lg n

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

46

61

53

51 56

Scapegoat Trees

● A scapegoat tree is a
balanced binary search
tree that works as follows:

● Pick some constant α > 1.

● As long as the tree height is
below α lg n, don’t do any
rebalancing after
insertions.

● Once the tree exceeds that
height, End the scapegoat
(the deepest α-imbalanced
node on the insertion path).

● Then, optimally rebuild the
subtree rooted at that node.

● All that’s left now is to
work through the details.

31

21

1

11

16

α lg n

6

26

36

41

52

48

46 51

56

53 61

lg n

Scapegoat Trees

● Questions we need to
address:

● How do we know that
optimally rebuilding the
scapegoat’s subtree will Ex
the tree height?

● How quickly can we optimally
rebuild the subtree rooted at
the scapegoat node?

● How do we End the scapegoat
node?

● In an amortized sense, how
fast is this strategy?

● Let’s address each of these
in turn.

31

21

1

11

16

α lg n

6

26

36

41

52

48

46 51

56

53 61

lg n

The Impact of Rebuilding

Scapegoat Rebuilding

● Our strategy relies on the following
claim:

Optimally rebuilding the subtree
rooted at the scapegoat node ensures
that, as a whole, the tree has height

at most α lg n.

● This turns out to not be too diPicult to
prove. Let’s break it down into pieces.

lg n

Scapegoat Rebuilding

● Suppose we insert a node that
causes the α lg n size limit to
be violated.

● Just before we inserted that
node, all other nodes in the
tree were at height α lg n or
below.

● That means each other node is
at depth ⌊α lg n⌋, and our new
node is at depth ⌊α lg n⌋ + 1.

● Now, look at the scapegoat
node and its subtree.

● Because our oPending node is
only one level too deep, we
just need to show that
optimally rebuilding the
scapegoat subtree reduces its
depth by at least one.

31

21

1

11

166

26

36

41

46

61

α lg n

56

51

53

56

Scapegoat Rebuilding

● Let v be our scapegoat node. Since it’s not α-balanced, we
know that

heightbefore(v) > α lg size(v).

● Let r be the root of the subtree we get after rebuilding at v.
Because we rebuilt v’s tree perfectly, we know that

lg size(v) ≥ heightafter(r).

● Putting this together gives us that

heightbefore(v) > α lg size(v) > lg size(v) ≥ heightafter(r).

● This means that

heightbefore(v) > heightafter(r).

● Therefore, the height of v’s subtree after rebuilding has
decreased by at least one, so overall balance is restored.

The Cost of Rebuilding

The Cost of Rebuilding

● Once we’ve identiEed the scapegoat
node, we need to rebuild the subtree
rooted at that node as a perfectly-
balanced BST.

● How quickly can we do this?

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v))
because there are size(v) nodes visited, and the recursive algorithm
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but
others exist that are faster in practice or more space-ePicient.
Look up the Galperin-Rivest or Day-Stout-Warren algorithms
for other ways to do this in time O(size(v)) in less space.

Finding the Scapegoat Node

lg n

46

Finding the Scapegoat

● Recall: The
scapegoat node is
the deepest node
on the access path
that isn’t α-
balanced.

● How ePiciently can
we identify this
node?

31

21

1

11

16

α lg n

6

26

36

41

46

56

52 61

5351

48

lg n

Finding the Scapegoat

● We need to check if
height(v) > α lg size(v).

● Observation: For
each node v on the
access path, height(v)
is the number of steps
between v and the
newly-added node.

● This can be computed
by counting upward
from the new node.

● That just leaves
computing size(v).

46

31

21

1

11

16

α lg n

6

26

36

41

46

56

52 61

5351

48
0

1

2

3

4

lg n

Finding the Scapegoat

● There are two ways we can
compute size(v) for the
nodes on the access path.

● Approach 1: Augment
each node with the number
of nodes in its subtree.

● (This can be done without
changing the cost of an
insertion or deletion.)

● We can then read size(v) by
looking at the cached value.

● This has the disadvantage
of requiring an extra
integer in each node of the
tree.

46

31

21

1

11

16

α lg n

6

26

36

41

46

56

52 61

5351

48

lg n

Finding the Scapegoat

● Approach 2: Compute
these values bottom-up.

● Start with a total of 1 for
the newly-added node.

● Each time we move
upward a step, run a DFS
in the opposite subtree to
count the number of
nodes there.

● Once we hit the
scapegoat node v, we’ll
have done O(size(v)) total
work counting nodes.

46

31

21

1

11

16

α lg n

6

26

36

41

46

56

52 61

5351

48
1

2

4

6

7

1

1

lg n

Finding the Scapegoat

● Approach 1 does less
work, but requires more
storage in each node.

● Approach 2 does more
work, but means each
node just stores data
and two child pointers.

● Which of these ends up
being more important
depends on a mix of
engineering constraints
and personal
preference.

46

31

21

1

11

16

α lg n

6

26

36

41

46

56

52 61

5351

48

Analyzing EPiciency

Analyzing EPiciency

● Based on what we’ve seen so far, the cost of an
insertion is

● O(log n) if the insertion keeps us below the α lg n
height threshold, and

● O(log n + size(v)) if we have to rebuild v as a
scapegoat.

● The size(v) term can be as large as n, which may
happen if the whole tree has to be rebuilt.

● However, it turns out that we can amortize this
size(v) term away.

Analyzing EPiciency

● Recall: To perform an amortized analysis, we do
the following:

● Find a potential function Φ that, intuitively, is small
when the data structure is “clean” and large when the
data structure is “messy.”

● Compute the value of ΔΦ = Φafter – Φbefore for each
operation.

● Assign amortized costs as

amortized-cost = real-cost + k · ΔΦ

for some constant k we get to pick.

● Our Erst step is to End a choice of Φ that’s large
when our tree is imbalanced and small when it’s
balanced.

Quantifying Imbalance

● Right before we rebuild a scapegoat subtree,
that tree is α-imbalanced.

● Right after we rebuild a scapegoat subtree,
that tree is perfectly balanced.

● Goal: Find a choice of Φ for our tree so that

● perfectly-balanced trees have low Φ, and

● α-imbalanced trees have high Φ.

● At this point, we need to do some exploring to
see what we End.

Quantifying Imbalance

● When we talk about “perfectly balanced” trees, what
exactly is this “balance” in reference to?

● Intuition 1: A perfectly balanced tree is one where each
node has roughly the same number of children in its left
subtree as in its right subtree.

● Intuition 2: An “imbalanced” tree will have nodes whose
left and right subtrees have diPering numbers of nodes.

3 7

5

11 15

13

9

3

5

7

9

11 15

13

Quantifying Imbalance

● For each node v, deEne the imbalance of
the node as

⚖(v) = |size(v.left) – size(v.right)|.

● This gives us a quantitative measure of our
more nebulous concept of “imbalance.”

3 7

5

11 15

13

9

3

5

7

9

11 15

13

DeEning our Potential

● We’re looking for a potential function Φ where

● a perfectly-balanced tree has low Φ, and

● an imbalanced tree has progressively higher Φ.

● A balanced tree has (⚖ v) low for all its nodes.

● An imbalanced tree has (⚖ v) high for many nodes.

● Initial Idea: DeEne Φ = Σv (⚖ v).

3 7

5

11 15

13

9

3

5

7

9

11 15

13

DeEning our Potential

● We’ve set Φ = Σv (⚖ v).

● What is Φ for the three trees shown below?

3 7

5

11 15

13

9

1 4

3 7

5

11 15

13

9

1 106 146 10

3

5

11

13

9

Formulate a
hypothesis! "

DeEning our Potential

● We’ve set Φ = Σv (⚖ v).

● What is Φ for the three trees shown below?

3 7

5

11 15

13

9

1 4

3 7

5

11 15

13

9

1 106 146 10

3

5

11

13

9

Discuss with your
neighbors! "

DeEning our Potential

● We’ve set Φ = Σv (⚖ v).

● What is Φ for the three trees shown below?

3 7

5

11 15

13

9

1 4

3 7

5

11 15

13

9

1 106 146 10

Φ = 6 Φ = 4

3

5

11

13

9

Φ = 2

DeEning our Potential

● Observation 1: Two trees that Ell their rows as
ePiciently as possible may have diPerent potentials.

● This means that when we rebalance trees, we need
to make sure to equalize the number of nodes in
the left and right subtrees of each node.

3 7

5

11 15

13

9

1 4

3 7

5

11 15

13

9

1 106 146 10

Φ = 6 Φ = 4

3

5

11

13

9

Φ = 2

DeEning our Potential

● Observation 2: The potential of a perfectly-balanced
tree can grow as a function of its number of nodes.

● Ideally, both of these trees should have potential 0,
indicating “perfectly balanced.” The potential
shouldn’t depend on the number of nodes in the tree.

3 7

5

11 15

13

9

1 4

3 7

5

11 15

13

9

1 106 146 10

Φ = 6 Φ = 4

3

5

11

13

9

Φ = 2

DeEning our Potential

● To account for otherwise balanced trees
with extra nodes in their bottom layers,
let’s deEne ’(⚖ v) as

● ’⚖ (v) = 0 if (⚖ v) ≤ 1.

● ’⚖ (v) = (⚖ v) otherwise.

● Revised Idea: Set Φ = Σᵥ ’⚖ (v).

DeEning our Potential

● We’re now using Φ = Σv ’(⚖ v).

● What is Φ for the three trees shown below?

● Intuition: If a subtree rooted at v is perfectly
balanced, then ’(⚖ v) = 0.

3 7

5

11 15

13

9

1 4

3 7

5

11 15

13

9

1 106 146 10

Φ = 2 Φ = 0

3

5

11

13

9

Φ = 0

Analyzing Scapegoat Trees

● Now that we have a deEnition of Φ, we can
look at the amortized cost of an insertion.

● We need to consider two cases:

● Case 1: The insertion doesn’t trigger a rebuild.

● Case 2: The insertion triggers a rebuild.

● Intuitively, we’re hoping that Case 1 has a
small positive ΔΦ (messes accumulate
slowly) and that Case 2 has a large negative
ΔΦ (messes get cleaned up quickly).

● Let’s run the numbers!

Analyzing Scapegoat Trees

● Case 1: Our insertion does not trigger a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we get to pick.

● We’re inserting into a tree of height at most α lg n, so our
real-cost is O(log n).

● When we insert the node, it changes (⚖ v) by ±1 for each
node v on its access path.

● There are O(log n) nodes on this access path, and (⚖ v)
increases by at most one for each of those nodes. This means

’(⚖ v) increases by at most two for each of those nodes.

● Therefore, ΔΦ = O(log n).

● Amortized cost: O(log n) + k · O(log n) = O(log n).

What are real-cost and ΔΦ,
as a function of n?

Formulate a hypothesis!

Analyzing Scapegoat Trees

● Case 1: Our insertion does not trigger a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we get to pick.

● We’re inserting into a tree of height at most α lg n, so our
real-cost is O(log n).

● When we insert the node, it changes (⚖ v) by ±1 for each
node v on its access path.

● There are O(log n) nodes on this access path, and (⚖ v)
increases by at most one for each of those nodes. This means

’(⚖ v) increases by at most two for each of those nodes.

● Therefore, ΔΦ = O(log n).

● Amortized cost: O(log n) + k · O(log n) = O(log n).

What are real-cost and ΔΦ,
as a function of n?

Discuss with your neighbors!

Analyzing Scapegoat Trees

● Case 1: Our insertion does not trigger a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we get to pick.

● We’re inserting into a tree of height at most α lg n, so our
real-cost is O(log n).

● When we insert the node, it changes (⚖ v) by ±1 for each
node v on its access path.

● There are O(log n) nodes on this access path, and (⚖ v)
increases by at most one for each of those nodes. This means

’(⚖ v) increases by at most two for each of those nodes.

● Therefore, ΔΦ = O(log n).

● Amortized cost: O(log n) + k · O(log n) = O(log n).

Analyzing Scapegoat Trees

● Case 1: Our insertion does
not trigger a rebuild.

● In this case, ΔΦ = O(log n).

● Focus on any one of the
new node’s ancestors.

● If we rebuild the subtree
rooted at that node in the
future, we have to do some
work to move the new node.

● Intuition: The O(log n)
added potential
corresponds to paying O(1)
work in advance to each of
O(log n) future rebuilds.

46

31

21

1

11

166

26

61

53

36

41

46

56

52

51

48

Analyzing Scapegoat Trees

● Case 2: Our insertion triggers a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we pick.

● Here, real-cost is O(log n + size(v)), where v is the
scapegoat node.

● The O(log n) comes from the cost of the actual insertion.

● The O(size(v)) is for the cost of rebuilding.

● For this to amortize away, we need ΔΦ to be -Ω(size(v)).

● Our previous intuition tells us this should be the case.

● Let’s run the numbers to check.

Analyzing Scapegoat Trees

● Let v be the scapegoat
node. We’re interested in

(⚖ v).

● One of v’s children is a
tree containing our
newly-inserted node.
Call that subtree x.

● Call v’s other child y.

● Goal: Determine
(⚖ v) = |size(x) – size(y)|.

v

x y

Since α > 1,
we know that
21/α ∈ (1, 2)

Analyzing Scapegoat Trees

● Since v is α-imbalanced, we
know

height(v) > α lg size(v).

● v is the deepest α-imbalanced
node on the access path. This
means x is α-balanced, so

height(x) ≤ α lg size(x).

● Since the newly-inserted node is
the deepest node in v’s subtree,
we know that

height(v) = height(x) + 1.

● Putting all this together gives

α lg size(v) < α lg size(x) + 1.

● That in turn means that

size(v) < size(x) · 21/α.

v

x y

h
e
ig

h
t(

x
)

h
e
ig

h
t(v

)

Analyzing Scapegoat Trees

● We just proved that

size(v) < size(x) · 21/α.

● We also know that

size(v) = 1 + size(x) + size(y).

● That means

size(x) + size(y) < size(x) · 21/α.

● Therefore,

size(y) < size(x) · (21/α – 1).

● This means that

 ⚖(v) = |size(x) – size(y)|
 > size(x) – size(x) · (21/α – 1)
 = size(x) · (2 – 21/α).

● Combined with the initial
inequality, this gives us that

⚖(v) > size(v) · (21 – 1/α – 1).

v

x y

Since 21/α ∈ (1, 2), we
know 21/α – 1 ∈ (0, 1).

So y must have
fewer nodes than x.

(Surprising, but true!
Explore and see why!)

Analyzing Scapegoat Trees

● We just proved that

size(v) < size(x) · 21/α.

● We also know that

size(v) = 1 + size(x) + size(y).

● That means

size(x) + size(y) < size(x) · 21/α.

● Therefore,

size(y) < size(x) · (21/α – 1).

● This means that

 ⚖(v) = |size(x) – size(y)|
 > size(x) – size(x) · (21/α – 1)
 = size(x) · (2 – 21/α).

● Combined with the initial
inequality, this gives us that

⚖(v) > size(v) · (21 – 1/α – 1).

v

x y

21 – 1/α ∈ (1, 2),
So 21 – 1/α – 1 ∈ (0, 1).

Analyzing Scapegoat Trees

● We’ve just concluded that

⚖(v) > size(v) · (21 – 1/α – 1)

● Let’s take a minute to check
our math.

● If α is close to 1, we’re
requiring the trees to be very
tightly balanced. Therefore,
when an imbalance occurs,
we’d expect (⚖ v) to be small
relative to size(v).

● If α is large, we’re allowing for
huge imbalances in the trees.
Therefore, when a node is too
deep, we expect the tree it’s a
part of to be highly
imbalanced, so we’d expect

(⚖ v) to be large relative to
size(v).

Analyzing Scapegoat Trees

● We’ve just concluded that

⚖(v) > size(v) · (21 – 1/α – 1)

● Notice that for any Exed
value of α that we have

⚖(v) = Ω(size(v)).

● In other words, the
scapegoat node always has
an imbalance that is (at
least) linear in the size of its
subtree.

● We can then backcharge the
linear work required to
optimally rebuild it to the
operations that caused the
imbalance in the Erst place.

Analyzing Scapegoat Trees

● We can now work out the amortized cost of an
insertion that triggers a rebuild.

● Actual cost of inserting a new node: O(log n).

● Actual cost of rebuilding at the scapegoat node:
O(size(v)).

● Change in potential: ΔΦ < -Ω(size(v)).

● Amortized cost:

O(log n) + O(size(v)) – k · Ω(size(v)).

● By tuning k based on the hidden constant factors
in the O and Ω terms, we can get them to cancel,
leaving an amortized cost of O(log n).

Where We Stand

● Here’s the current scorecard for
scapegoat trees.

● Intuitively:

● If you pick α to be smaller, you get
a more balanced tree (faster
lookups), but the overhead to
optimally rebuild subtrees gets
bigger (slower insertions).

● If you pick α to be larger, you get a
less balanced tree (slower lookups),
but the overhead to optimally
rebuild trees is smaller (faster
insertions).

● Tuning α appropriately now
becomes a matter of
engineering.

● Question: What about deletions?

Scapegoat Tree

 Lookup: O(log n)

 Insert: O(log n)*

* amortized

Why Deletions are DiPerent

● In the insert-only case, we can
easily detect when the height is
violated, and we know which
node exceeded the height limit.

● Neither of these are true with
deletions.

● Deleting one node may make an
unrelated node height above the
threshold.

● Deleting one node may make
multiple unrelated nodes exceed
the threshold.

● Intuition: Deletions will
require some sort of global
rebuilding of the tree, rather
than the local rebuilding we
saw earlier.

36

31

21

1

11

16

α lg n

6

lg n

Why Deletions are DiPerent

● As we delete nodes
from our BST, the
value of α lg n will
decrease, but it does
so slowly.

● Leaf nodes will be the
Erst to exceed the
α lg n threshold.

● However, a very large
number of nodes need
to be deleted before
non-leaves cross the
threshold.

● Let’s quantify this.

36

31

21

1

11

166

lg n

α lg n

Why Deletions are DiPerent

● Suppose our tree currently has n nodes in it. We’ll perform
some number of deletions and arrive at a tree with nnew nodes.

● At what value of nnew is it possible for non-leaf nodes to have a
depth greater than α lg nnew?

● We need to solve

α lg nnew < α lg n – 1.

● Rearranging gives us that

nnew < n · 2-1/α.

● Note that 2-1/α ∈ (½, 1) for any α > 1.

● We need to delete at least a constant fraction (speciEcally, a
1 – 2-1/α fraction) of the nodes before nodes one layer above
the bottom could exceed the α lg n limit.

Why Deletions are DiPerent

● Idea: Don’t worry about
rebalancing until we lose a
(1 – 2-1/α) fraction of the nodes.

● Assuming we lose fewer than
this many nodes, all nodes in the
tree will be at depth at most
α lg n + 1.

● Focus on any node. Assume there
were n₀ nodes at the point when
the node was inserted. The node
depth is then at most α lg n₀.

● As long as we haven’t lost at least
a (1 – 2-1/α) fraction of the nodes,
the current value of n is such that
α lg n ≥ α lg n₀ – 1.

● This still gives us lookups that
run in time O(log n), and
insertions still work properly.

lg n

α lg n

Why Deletions are DiPerent

● Once we’ve lost a (1 – 2-1/α)
fraction of the nodes, we
need to worry about
rebalancing the tree.

● We won’t know much
about the tree shape.

● It could have a large
number of deep nodes.

● It could be perfectly
balanced.

● Idea: Don’t try to analyze
the tree. Just rebuild the
entire tree from
scratch. "

lg n

α lg n

Why Deletions are DiPerent

● Once we’ve lost a (1 – 2-1/α)
fraction of the nodes, we
need to worry about
rebalancing the tree.

● We won’t know much
about the tree shape.

● It could have a large
number of deep nodes.

● It could be perfectly
balanced.

● Idea: Don’t try to analyze
the tree. Just rebuild the
entire tree from
scratch. "

lg n

α lg n

Scapegoat Tree Deletions

● Here’s how this approach will work.

● Keep track of the maximum number of nodes the tree
has had since it was last globally rebuilt. (Call this nmax).

● If the number of nodes drops to a nmax · 2-1/α, globally
rebuild the tree as a perfectly balanced tree, then reset
nmax to the current tree size.

● Although rebuilding the tree is an expensive
operation, intuitively we expect to be able to
“backcharge” the work to the lazy delete
operations that triggered it.

Scapegoat Tree Deletions

● Our goal now is to work out the amortized cost of doing
global rebuilds on deletions.

● Recall: Our current potential function is

Φ = Σᵥ ’(⚖ v),

which we chose to make the cost of local rebuilds on
insertions amortize away.

● We need to adjust this potential function to account for the
fact that deleted nodes slowly lead us to do a global rebuild
of the whole tree.

● Idea: Change our potential to

Φ = D + Σᵥ ’(⚖ v),

where D is the number of deletions that have been
performed since we last did a global rebuild.

Scapegoat Tree Deletions

● What is the amortized cost of a deletion when we don’t
trigger a global rebuild?

● Actual cost: O(log n), since the tree height is at most
α lg n + 1.

● Change in potential (recall that Φ = D + Σᵥ ’(⚖ v)):

● D increases by one, since we’ve performed a deletion.

● ’⚖ (v) changes by at most two for each node on the access path of
the removed node, and there are O(log n) such nodes.

● Net change: O(log n).

● Amortized cost:

O(log n) + k · O(log n) = O(log n).

Scapegoat Tree Deletions

● What is the amortized cost of a deletion when we do trigger a
global rebuild?

● We picked

Φ = D + Σᵥ ’(⚖ v).

● After the rebuild, we have Σᵥ ’(⚖ v) = 0. Therefore, there is an
unknown but nonpositive change in potential for this term.

● How much does D change?

● At the point where we start the rebuild, we have n = nmax · 2-1/α nodes
left in the tree.

● This means that D ≥ nmax · (1 – 2-1/α).

● Rewriting in terms of n, this means D ≥ n · (21/α – 1) = Ω(n).

● Since after this step we drop D to zero, we have ΔD ≤ -Ω(n).

● Overall, we have ΔΦ ≤ -Ω(n).

Scapegoat Tree Deletions

● Actual cost of the deletion:

● O(log n) for the actual deletion logic.

● O(n) to rebuild the tree.

● Amortized cost:

O(log n) + O(n) – k · Ω(n).

● As before, we can tune k based on the
hidden constant factors in the O and Ω
terms to make them cancel out and leave
behind an amortized cost of O(log n).

The Final Scorecard

● Here’s the Enal
scorecard for our
scapegoat tree.

● It matches the time
bounds we’d expect of a
red/black tree, in an
amortized sense, with a
dramatically simpler
implementation.

● This gives a sense of
just how useful a
technique amortization
can be!

Scapegoat Tree

 Lookup: O(log n)

 Insert: O(log n)*

 Delete: O(log n)*

* amortized

Further Exploration

● I haven’t seen much work done into building an optimized scapegoat tree
implementation. How fast can you make this idea work? Is it competitive with a
red/black tree?

● We’ve treated α as a constant. What if you allow it to vary based on the work�ow (say,
decreasing it as more lookups happen and increasing it as more deletions/insertions
happen)? A past CS166 project team looked into this in 2014, and I’m curious to see it on
modern hardware.

● Are there other, less aggressive strategies besides rebuilding the scapegoat subtree that
can be used to restore balance?

● Are there other ways of picking a scapegoat node that work better in practice? For
example, could you pick a scapegoat higher up in the tree that would do a better job
rebalancing things?

● What is the practical time/space tradeoP between the two approaches for calculating
size(v) when Ending a scapegoat?

● The version of scapegoat trees described here is a hybrid between two approaches: the
original developed by Galperin and Rivest and a simpliEcation by JeP Erickson. The
Galperin/Rivest version has tighter structural constraints, while Erickson’s version uses
a diPerent deletion strategy. Can you remix this ideas in other ways?

● Because there are no rotations, it should be way easier to augment a scapegoat tree
than it is to augment a red/black tree. Can you End a weaker set of requirements for
augmenting a BST if you assume the tree you’re augmenting is a scapegoat tree?

Next Time

● Tournament Heaps

● A simple and fast priority queue.

● Lazy Tournament Heaps

● An asymptotically faster priority queue.

Scapegoat Trees

Outline for Today

● Recap from Last Time

● What is amortization, again?

● Lazy Balanced Trees

● Messes are okay, up to a point.

● Lazy Tree Insertions

● Deferring updates until they’re needed.

● Lazy Tree Deletions

● And some associated subtleties.

Recap from Last Time

Amortized Analysis

● We will assign amortized costs to each operation such that

● To do so, deEne a potential function Φ such that

● Φ measures how “messy” the data structure is,

● Φstart = 0, and

● Φ ≥ 0.

● Then, deEne amortized costs of operations as

amortized-cost = real-cost + k · ΔΦ

for a choice of k under our control.

● Intuitively:

● If an operation makes a mess that needs to be cleaned up later, its
amortized cost will be higher than its original cost.

● If an operation cleans up a mess, its amortized cost will be lower than its
real cost.

∑ amortized -cost ≥ ∑ real-cost

New StuP!

Balanced Trees

● The red/black trees we explored earlier are
worst-case ePicient and guaranteed to have a
height of O(log n).

● However, explaining how they work and deriving
the basic insertion rules took two lectures – and
we still didn’t Enish covering all cases.

● Goal for today: Find a simpler way to keep a
tree balanced, under the assumption we’re okay
with amortized-ePicient rather than worst-case
ePicient lookups.

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3 7

5

11 15

13

19 25

23

29 35

33

9 27

17

21

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3 7

5

11 15

13

19 25

23

29 35

33

9 27

17

21

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3 7

5

11

13

19 25

23

29 35

33

9 27

17

21

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3 7

5

11

13

19 25

23

29 35

33

9 27

17

21

17

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3 7

5

11

13

19 25

23

29 35

33

9 27

19

21

17

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3 7

5

11

13

21 25

23

29 35

33

9 27

19

17

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3 7

5

11

13

21 25

23

29 35

33

9 27

19

17

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3

5

11

13

21 25

23

29 35

33

9 27

19

17

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3

5

11

13

21 25

23

29 35

33

9 27

19

17

22

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3

5

11

13

21 25

23

29 35

33

9 27

19

17

22

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3

5

11

13

21 25

23

29 35

33

9 27

19

17

22

9

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3

5

11

13

21 25

23

29 35

33

11 27

19

17

22

9

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3

5

13

13

21 25

23

29 35

33

11 27

19

17

22

9

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3

5

13

17

21 25

23

29 35

33

11 27

19

17

22

9

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3

5

13

17

21 25

23

29 35

33

11 27

19

19

22

9

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3

5

13

17

21 25

23

29 35

33

11 27

21

19

22

9

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3

5

13

17

22 25

23

29 35

33

11 27

21

199

On O(log n) Height

● A perfectly-balanced binary search tree with n > 0
nodes has height at most lg n.

● (lg n denotes log₂ n.)

● However, this tree shape is diPicult to maintain: a
single insertion or deletion might require a lot of
node reshu_ing.

3

5

13

17

22 25

23

29 35

33

11 27

21

199

On O(log n) Height

● To speed up logic after insertions or deletions, most balanced
BSTs only guarantee height of multiple of lg n.

● For example, red/black trees have height at most (roughly)
2 lg n in the worst case.

On O(log n) Height

● We’re already comfortable with trees
whose heights are α lg n for some α > 1.

● Question: Can we design a balanced
tree purely based on this restriction,
without any other structural constraints?

Adding Slack Space

● Pick a Exed constant
α > 1.

● Set the maximum
height on our tree to
α lg n.

● As long as we don’t
exceed this maximum
height, all operations
on our BST will run
in time O(log n), and
we don’t really care
about the shape of
the tree.

36

31 41

21

α lg n

lg n

Adding Slack Space

● Pick a Exed constant
α > 1.

● Set the maximum
height on our tree to
α lg n.

● As long as we don’t
exceed this maximum
height, all operations
on our BST will run
in time O(log n), and
we don’t really care
about the shape of
the tree.

36

31 41

21

1

α lg n

lg n

Adding Slack Space

● Pick a Exed constant
α > 1.

● Set the maximum
height on our tree to
α lg n.

● As long as we don’t
exceed this maximum
height, all operations
on our BST will run
in time O(log n), and
we don’t really care
about the shape of
the tree.

36

31 41

21

1

α lg n

26

lg n

Adding Slack Space

● Pick a Exed constant
α > 1.

● Set the maximum
height on our tree to
α lg n.

● As long as we don’t
exceed this maximum
height, all operations
on our BST will run
in time O(log n), and
we don’t really care
about the shape of
the tree.

36

31 41

4621

1 26

α lg n

lg n

Adding Slack Space

● Pick a Exed constant
α > 1.

● Set the maximum
height on our tree to
α lg n.

● As long as we don’t
exceed this maximum
height, all operations
on our BST will run
in time O(log n), and
we don’t really care
about the shape of
the tree.

36

31 41

4621

1

α lg n

26

lg n

Adding Slack Space

● Pick a Exed constant
α > 1.

● Set the maximum
height on our tree to
α lg n.

● As long as we don’t
exceed this maximum
height, all operations
on our BST will run
in time O(log n), and
we don’t really care
about the shape of
the tree.

36

31 41

4621

1

11

α lg n

26

lg n

Adding Slack Space

● Pick a Exed constant
α > 1.

● Set the maximum
height on our tree to
α lg n.

● As long as we don’t
exceed this maximum
height, all operations
on our BST will run
in time O(log n), and
we don’t really care
about the shape of
the tree.

36

31 41

4621

1

11

α lg n

26

lg n

Adding Slack Space

● Pick a Exed constant
α > 1.

● Set the maximum
height on our tree to
α lg n.

● As long as we don’t
exceed this maximum
height, all operations
on our BST will run
in time O(log n), and
we don’t really care
about the shape of
the tree.

36

31 41

46

61

21

1

11

α lg n

26

lg n

Adding Slack Space

● Pick a Exed constant
α > 1.

● Set the maximum
height on our tree to
α lg n.

● As long as we don’t
exceed this maximum
height, all operations
on our BST will run
in time O(log n), and
we don’t really care
about the shape of
the tree.

36

31 41

46

61

21

1

11

α lg n

6

26

lg n

Adding Slack Space

● Pick a Exed constant
α > 1.

● Set the maximum
height on our tree to
α lg n.

● As long as we don’t
exceed this maximum
height, all operations
on our BST will run
in time O(log n), and
we don’t really care
about the shape of
the tree.

36

31 41

46

61

56

21

1

11

α lg n

6

26

lg n

Adding Slack Space

● Pick a Exed constant
α > 1.

● Set the maximum
height on our tree to
α lg n.

● As long as we don’t
exceed this maximum
height, all operations
on our BST will run
in time O(log n), and
we don’t really care
about the shape of
the tree.

36

31 41

46

61

56

21

1

11

16

α lg n

6

26

lg n

Adding Slack Space

● Pick a Exed constant
α > 1.

● Set the maximum
height on our tree to
α lg n.

● As long as we don’t
exceed this maximum
height, all operations
on our BST will run
in time O(log n), and
we don’t really care
about the shape of
the tree.

36

31 41

46

61

56

51

21

1

11

16

α lg n

6

26

lg n

Adding Slack Space

● For each node v in our
BST, let size(v) denote
the number of nodes in
the subtree rooted at v
and height(v) denote the
height of the subtree
rooted at v.

● We’ll say that a node v is
α-balanced if

height(v) ≤ α lg size(v).

● Intuitively, a α-balanced
node is the root of a
subtree whose height is
within a factor of α of
optimal.

36

31 41

46

61

56

51

21

1

11

16

α lg n

6

26

lg n

Adding Slack Space

● Suppose, however, that
after doing an
insertion, our tree
exceeds α lg n.

● At this point, we need
to do some sort of
“cleanup” on the tree
to pull it back to a
reasonable height.

● Ideally, we’ll want to
minimize the amount of
cleanup we need to do
so that this step will
run quickly.

36

31 41

46

61

56

51

21

1

11

16

α lg n

6

26

53

lg n

Scapegoat Nodes

● Look at the access path from
the root node to the newly-
inserted node.

● We know the root node is not
α-balanced, since the overall
tree is too tall.

● We also know that the newly-
inserted node is α-balanced,
since it has no children.

● Therefore, there has to be
some deepest node on the
access path that isn’t α-
balanced.

● We can “blame” the imbalance
in the overall tree on this
subtree. The node chosen this
way is called the scapegoat.

36

31 41

46

61

56

51

21

1

11

16

α lg n

6

26

53

lg n

lg n

Scapegoat Nodes

● Look at the access path from
the root node to the newly-
inserted node.

● We know the root node is not
α-balanced, since the overall
tree is too tall.

● We also know that the newly-
inserted node is α-balanced,
since it has no children.

● Therefore, there has to be
some deepest node on the
access path that isn’t α-
balanced.

● We can “blame” the imbalance
in the overall tree on this
subtree. The node chosen this
way is called the scapegoat.

31

21

1

11

16

α lg n

6

26

36

41

46

61

56

51

53

lg n

Scapegoat Nodes

● Look at the access path from
the root node to the newly-
inserted node.

● We know the root node is not
α-balanced, since the overall
tree is too tall.

● We also know that the newly-
inserted node is α-balanced,
since it has no children.

● Therefore, there has to be
some deepest node on the
access path that isn’t α-
balanced.

● We can “blame” the imbalance
in the overall tree on this
subtree. The node chosen this
way is called the scapegoat.

31

21

1

11

16

α lg n

6

26

36

41

46

61

56

51

53

lg n

Scapegoat Nodes

● Look at the access path from
the root node to the newly-
inserted node.

● We know the root node is not
α-balanced, since the overall
tree is too tall.

● We also know that the newly-
inserted node is α-balanced,
since it has no children.

● Therefore, there has to be
some deepest node on the
access path that isn’t α-
balanced.

● We can “blame” the imbalance
in the overall tree on this
subtree. The node chosen this
way is called the scapegoat.

31

21

1

11

16

α lg n

6

26

36

41

46

61

56

51

53

lg n

Scapegoat Nodes

● Look at the access path from
the root node to the newly-
inserted node.

● We know the root node is not
α-balanced, since the overall
tree is too tall.

● We also know that the newly-
inserted node is α-balanced,
since it has no children.

● Therefore, there has to be
some deepest node on the
access path that isn’t α-
balanced.

● We can “blame” the imbalance
in the overall tree on this
subtree. The node chosen this
way is called the scapegoat.

31

21

1

11

16

α lg n

6

26

36

41

46

61

56

51

53

lg n

Scapegoat Nodes

● Look at the access path from
the root node to the newly-
inserted node.

● We know the root node is not
α-balanced, since the overall
tree is too tall.

● We also know that the newly-
inserted node is α-balanced,
since it has no children.

● Therefore, there has to be
some deepest node on the
access path that isn’t α-
balanced.

● We can “blame” the imbalance
in the overall tree on this
subtree. The node chosen this
way is called the scapegoat.

31

21

1

11

16

α lg n

6

26

36

41

46

61

56

51

53

lg n

Scapegoat Nodes

● Look at the access path from
the root node to the newly-
inserted node.

● We know the root node is not
α-balanced, since the overall
tree is too tall.

● We also know that the newly-
inserted node is α-balanced,
since it has no children.

● Therefore, there has to be
some deepest node on the
access path that isn’t α-
balanced.

● We can “blame” the imbalance
in the overall tree on this
subtree. The node chosen this
way is called the scapegoat.

31

21

1

11

16

α lg n

6

26

36

41

46

61

56

51

53

lg n

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

46

61

56

51

53

lg n

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

46

61

51 53 56

lg n

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

46

61

53

51 56

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

46

61

53

51 56

lg n

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

46

61

53

51 56

52

lg n

lg n

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

46

61

53

51 56

52

lg n

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

46

51 52 53 56 61

lg n

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

46

56

52 61

5351

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

46

56

52 61

5351

lg n

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

46

56

52 61

5351

48

lg n

lg n

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

46

56

52 61

5351

48

lg n

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

48 5146 52 53 56 61

lg n

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

52

48

46 51

56

53 61

Scapegoat Nodes

● We know that the
subtree rooted at the
scapegoat isn’t
α-balanced.

● Idea: Rebuild this tree
as a perfectly-balanced
BST.

● This will reduce the
height of the subtree,
which in turn restores
the requirement that
the height be at most
α lg n.

31

21

1

11

16

α lg n

6

26

36

41

52

48

46 51

56

53 61

lg n

Scapegoat Trees

● A scapegoat tree is a
balanced binary search
tree that works as follows:

● Pick some constant α > 1.

● As long as the tree height is
below α lg n, don’t do any
rebalancing after
insertions.

● Once the tree exceeds that
height, End the scapegoat
(the deepest α-imbalanced
node on the insertion path).

● Then, optimally rebuild the
subtree rooted at that node.

● All that’s left now is to
work through the details.

31

21

1

11

16

α lg n

6

26

36

41

52

48

46 51

56

53 61

lg n

Scapegoat Trees

● Questions we need to
address:

● How do we know that
optimally rebuilding the
scapegoat’s subtree will Ex
the tree height?

● How quickly can we optimally
rebuild the subtree rooted at
the scapegoat node?

● How do we End the scapegoat
node?

● In an amortized sense, how
fast is this strategy?

● Let’s address each of these
in turn.

31

21

1

11

16

α lg n

6

26

36

41

52

48

46 51

56

53 61

lg n

The Impact of Rebuilding

Scapegoat Rebuilding

● Our strategy relies on the following
claim:

Optimally rebuilding the subtree
rooted at the scapegoat node ensures
that, as a whole, the tree has height

at most α lg n.

● This turns out to not be too diPicult to
prove. Let’s break it down into pieces.

lg n

Scapegoat Rebuilding

● Suppose we insert a node that
causes the α lg n size limit to
be violated.

● Just before we inserted that
node, all other nodes in the
tree were at height α lg n or
below.

● That means each other node is
at depth ⌊α lg n⌋, and our new
node is at depth ⌊α lg n⌋ + 1.

● Now, look at the scapegoat
node and its subtree.

● Because our oPending node is
only one level too deep, we
just need to show that
optimally rebuilding the
scapegoat subtree reduces its
depth by at least one.

31

21

1

11

166

26

36

41

46

61

α lg n

56

51

53

56

Scapegoat Rebuilding

● Let v be our scapegoat node. Since it’s not α-balanced, we
know that

heightbefore(v) > α lg size(v).

● Let r be the root of the subtree we get after rebuilding at v.
Because we rebuilt v’s tree perfectly, we know that

lg size(v) ≥ heightafter(r).

● Putting this together gives us that

heightbefore(v) > α lg size(v) > lg size(v) ≥ heightafter(r).

● This means that

heightbefore(v) > heightafter(r).

● Therefore, the height of v’s subtree after rebuilding has
decreased by at least one, so overall balance is restored.

The Cost of Rebuilding

The Cost of Rebuilding

● Once we’ve identiEed the scapegoat
node, we need to rebuild the subtree
rooted at that node as a perfectly-
balanced BST.

● How quickly can we do this?

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v))
because there are size(v) nodes visited, and the recursive algorithm
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but
others exist that are faster in practice or more space-ePicient.
Look up the Galperin-Rivest or Day-Stout-Warren algorithms
for other ways to do this in time O(size(v)) in less space.

46

56

52 61

5351

48

48 5146 52 53 56 61

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v))
because there are size(v) nodes visited, and the recursive algorithm
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but
others exist that are faster in practice or more space-ePicient.
Look up the Galperin-Rivest or Day-Stout-Warren algorithms
for other ways to do this in time O(size(v)) in less space.

48 5146 52 53 56 61

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v))
because there are size(v) nodes visited, and the recursive algorithm
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but
others exist that are faster in practice or more space-ePicient.
Look up the Galperin-Rivest or Day-Stout-Warren algorithms
for other ways to do this in time O(size(v)) in less space.

48 5146 52 53 56 61

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v))
because there are size(v) nodes visited, and the recursive algorithm
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but
others exist that are faster in practice or more space-ePicient.
Look up the Galperin-Rivest or Day-Stout-Warren algorithms
for other ways to do this in time O(size(v)) in less space.

48 5146 52 53 56 61

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v))
because there are size(v) nodes visited, and the recursive algorithm
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but
others exist that are faster in practice or more space-ePicient.
Look up the Galperin-Rivest or Day-Stout-Warren algorithms
for other ways to do this in time O(size(v)) in less space.

48 5146

52

53 56 61

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v))
because there are size(v) nodes visited, and the recursive algorithm
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but
others exist that are faster in practice or more space-ePicient.
Look up the Galperin-Rivest or Day-Stout-Warren algorithms
for other ways to do this in time O(size(v)) in less space.

48 5146

52

53 56 61

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v))
because there are size(v) nodes visited, and the recursive algorithm
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but
others exist that are faster in practice or more space-ePicient.
Look up the Galperin-Rivest or Day-Stout-Warren algorithms
for other ways to do this in time O(size(v)) in less space.

48

5146

52

53 56 61

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v))
because there are size(v) nodes visited, and the recursive algorithm
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but
others exist that are faster in practice or more space-ePicient.
Look up the Galperin-Rivest or Day-Stout-Warren algorithms
for other ways to do this in time O(size(v)) in less space.

48

5146

52

53 56 61

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v))
because there are size(v) nodes visited, and the recursive algorithm
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but
others exist that are faster in practice or more space-ePicient.
Look up the Galperin-Rivest or Day-Stout-Warren algorithms
for other ways to do this in time O(size(v)) in less space.

48

5146

52

53

56

61

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v))
because there are size(v) nodes visited, and the recursive algorithm
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but
others exist that are faster in practice or more space-ePicient.
Look up the Galperin-Rivest or Day-Stout-Warren algorithms
for other ways to do this in time O(size(v)) in less space.

48

5146

52

53

56

61

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v))
because there are size(v) nodes visited, and the recursive algorithm
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but
others exist that are faster in practice or more space-ePicient.
Look up the Galperin-Rivest or Day-Stout-Warren algorithms
for other ways to do this in time O(size(v)) in less space.

48

5146

52

53

56

61

The Cost of Rebuilding

● Run an inorder traversal over the subtree and form an array of
its nodes in sorted order.

● Use the following recursive algorithm to build an optimal tree:

● If there are no nodes left, return an empty tree.

● Otherwise, put the median element at the root of the tree, and
recursively build its left and right subtrees optimally.

● The cost of this strategy is O(size(v)), where v is the node at the
root of the subtree.

● Quick way to see this: the inorder traversal takes time O(size(v))
because there are size(v) nodes visited, and the recursive algorithm
has the recurrence T(m) = 2T(m / 2) + O(1).

● This is the simplest algorithm to optimally rebuild the tree, but
others exist that are faster in practice or more space-ePicient.
Look up the Galperin-Rivest or Day-Stout-Warren algorithms
for other ways to do this in time O(size(v)) in less space.

Finding the Scapegoat Node

lg n

46

Finding the Scapegoat

● Recall: The
scapegoat node is
the deepest node
on the access path
that isn’t α-
balanced.

● How ePiciently can
we identify this
node?

31

21

1

11

16

α lg n

6

26

36

41

46

56

52 61

5351

48

lg n

Finding the Scapegoat

● We need to check if
height(v) > α lg size(v).

● Observation: For
each node v on the
access path, height(v)
is the number of steps
between v and the
newly-added node.

● This can be computed
by counting upward
from the new node.

● That just leaves
computing size(v).

46

31

21

1

11

16

α lg n

6

26

36

41

46

56

52 61

5351

48
0

1

2

3

4

lg n

Finding the Scapegoat

● There are two ways we can
compute size(v) for the
nodes on the access path.

● Approach 1: Augment
each node with the number
of nodes in its subtree.

● (This can be done without
changing the cost of an
insertion or deletion.)

● We can then read size(v) by
looking at the cached value.

● This has the disadvantage
of requiring an extra
integer in each node of the
tree.

46

31

21

1

11

16

α lg n

6

26

36

41

46

56

52 61

5351

48

lg n

Finding the Scapegoat

● Approach 2: Compute
these values bottom-up.

● Start with a total of 1 for
the newly-added node.

● Each time we move
upward a step, run a DFS
in the opposite subtree to
count the number of
nodes there.

● Once we hit the
scapegoat node v, we’ll
have done O(size(v)) total
work counting nodes.

46

31

21

1

11

16

α lg n

6

26

36

41

46

56

52 61

5351

48
1

2

4

6

7

1

1

lg n

Finding the Scapegoat

● Approach 1 does less
work, but requires more
storage in each node.

● Approach 2 does more
work, but means each
node just stores data
and two child pointers.

● Which of these ends up
being more important
depends on a mix of
engineering constraints
and personal
preference.

46

31

21

1

11

16

α lg n

6

26

36

41

46

56

52 61

5351

48

Analyzing EPiciency

Analyzing EPiciency

● Based on what we’ve seen so far, the cost of an
insertion is

● O(log n) if the insertion keeps us below the α lg n
height threshold, and

● O(log n + size(v)) if we have to rebuild v as a
scapegoat.

● The size(v) term can be as large as n, which may
happen if the whole tree has to be rebuilt.

● However, it turns out that we can amortize this
size(v) term away.

Analyzing EPiciency

● Recall: To perform an amortized analysis, we do
the following:

● Find a potential function Φ that, intuitively, is small
when the data structure is “clean” and large when the
data structure is “messy.”

● Compute the value of ΔΦ = Φafter – Φbefore for each
operation.

● Assign amortized costs as

amortized-cost = real-cost + k · ΔΦ

for some constant k we get to pick.

● Our Erst step is to End a choice of Φ that’s large
when our tree is imbalanced and small when it’s
balanced.

Quantifying Imbalance

● Right before we rebuild a scapegoat subtree,
that tree is α-imbalanced.

● Right after we rebuild a scapegoat subtree,
that tree is perfectly balanced.

● Goal: Find a choice of Φ for our tree so that

● perfectly-balanced trees have low Φ, and

● α-imbalanced trees have high Φ.

● At this point, we need to do some exploring to
see what we End.

Quantifying Imbalance

● When we talk about “perfectly balanced” trees, what
exactly is this “balance” in reference to?

● Intuition 1: A perfectly balanced tree is one where each
node has roughly the same number of children in its left
subtree as in its right subtree.

● Intuition 2: An “imbalanced” tree will have nodes whose
left and right subtrees have diPering numbers of nodes.

3 7

5

11 15

13

9

3

5

7

9

11 15

13

Quantifying Imbalance

● For each node v, deEne the imbalance of
the node as

⚖(v) = |size(v.left) – size(v.right)|.

● This gives us a quantitative measure of our
more nebulous concept of “imbalance.”

3 7

5

11 15

13

9

3

5

7

9

11 15

13

DeEning our Potential

● We’re looking for a potential function Φ where

● a perfectly-balanced tree has low Φ, and

● an imbalanced tree has progressively higher Φ.

● A balanced tree has (⚖ v) low for all its nodes.

● An imbalanced tree has (⚖ v) high for many nodes.

● Initial Idea: DeEne Φ = Σv (⚖ v).

3 7

5

11 15

13

9

3

5

7

9

11 15

13

DeEning our Potential

● We’ve set Φ = Σv (⚖ v).

● What is Φ for the three trees shown below?

3 7

5

11 15

13

9

1 4

3 7

5

11 15

13

9

1 106 146 10

3

5

11

13

9

Formulate a
hypothesis! "

DeEning our Potential

● We’ve set Φ = Σv (⚖ v).

● What is Φ for the three trees shown below?

3 7

5

11 15

13

9

1 4

3 7

5

11 15

13

9

1 106 146 10

3

5

11

13

9

Discuss with your
neighbors! "

DeEning our Potential

● We’ve set Φ = Σv (⚖ v).

● What is Φ for the three trees shown below?

3 7

5

11 15

13

9

1 4

3 7

5

11 15

13

9

1 106 146 10

Φ = 6 Φ = 4

3

5

11

13

9

Φ = 2

DeEning our Potential

● Observation 1: Two trees that Ell their rows as
ePiciently as possible may have diPerent potentials.

● This means that when we rebalance trees, we need
to make sure to equalize the number of nodes in
the left and right subtrees of each node.

3 7

5

11 15

13

9

1 4

3 7

5

11 15

13

9

1 106 146 10

Φ = 6 Φ = 4

3

5

11

13

9

Φ = 2

DeEning our Potential

● Observation 2: The potential of a perfectly-balanced
tree can grow as a function of its number of nodes.

● Ideally, both of these trees should have potential 0,
indicating “perfectly balanced.” The potential
shouldn’t depend on the number of nodes in the tree.

3 7

5

11 15

13

9

1 4

3 7

5

11 15

13

9

1 106 146 10

Φ = 6 Φ = 4

3

5

11

13

9

Φ = 2

DeEning our Potential

● To account for otherwise balanced trees
with extra nodes in their bottom layers,
let’s deEne ’(⚖ v) as

● ’⚖ (v) = 0 if (⚖ v) ≤ 1.

● ’⚖ (v) = (⚖ v) otherwise.

● Revised Idea: Set Φ = Σᵥ ’⚖ (v).

De#ning our Potential

● We’re now using Φ = Σv ’(⚖ v).

● What is Φ for the three trees shown below?

● Intuition: If a subtree rooted at v is perfectly
balanced, then ’(⚖ v) = 0.

3 7

5

11 15

13

9

1 4

3 7

5

11 15

13

9

1 106 146 10

Φ = 2 Φ = 0

3

5

11

13

9

Φ = 0

Analyzing Scapegoat Trees

● Now that we have a de#nition of Φ, we can
look at the amortized cost of an insertion.

● We need to consider two cases:

● Case 1: The insertion doesn’t trigger a rebuild.

● Case 2: The insertion triggers a rebuild.

● Intuitively, we’re hoping that Case 1 has a
small positive ΔΦ (messes accumulate
slowly) and that Case 2 has a large negative
ΔΦ (messes get cleaned up quickly).

● Let’s run the numbers!

Analyzing Scapegoat Trees

● Case 1: Our insertion does not trigger a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we get to pick.

● We’re inserting into a tree of height at most α lg n, so our
real-cost is O(log n).

● When we insert the node, it changes (⚖ v) by ±1 for each
node v on its access path.

● There are O(log n) nodes on this access path, and (⚖ v)
increases by at most one for each of those nodes. This means

’(⚖ v) increases by at most two for each of those nodes.

● Therefore, ΔΦ = O(log n).

● Amortized cost: O(log n) + k · O(log n) = O(log n).

What are real-cost and ΔΦ,
as a function of n?

Formulate a hypothesis!

Analyzing Scapegoat Trees

● Case 1: Our insertion does not trigger a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we get to pick.

● We’re inserting into a tree of height at most α lg n, so our
real-cost is O(log n).

● When we insert the node, it changes (⚖ v) by ±1 for each
node v on its access path.

● There are O(log n) nodes on this access path, and (⚖ v)
increases by at most one for each of those nodes. This means

’(⚖ v) increases by at most two for each of those nodes.

● Therefore, ΔΦ = O(log n).

● Amortized cost: O(log n) + k · O(log n) = O(log n).

What are real-cost and ΔΦ,
as a function of n?

Discuss with your neighbors!

Analyzing Scapegoat Trees

● Case 1: Our insertion does not trigger a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we get to pick.

● We’re inserting into a tree of height at most α lg n, so our
real-cost is O(log n).

● When we insert the node, it changes (⚖ v) by ±1 for each
node v on its access path.

● There are O(log n) nodes on this access path, and (⚖ v)
increases by at most one for each of those nodes. This means

’(⚖ v) increases by at most two for each of those nodes.

● Therefore, ΔΦ = O(log n).

● Amortized cost: O(log n) + k · O(log n) = O(log n).

Analyzing Scapegoat Trees

● Case 1: Our insertion does
not trigger a rebuild.

● In this case, ΔΦ = O(log n).

● Focus on any one of the
new node’s ancestors.

● If we rebuild the subtree
rooted at that node in the
future, we have to do some
work to move the new node.

● Intuition: The O(log n)
added potential
corresponds to paying O(1)
work in advance to each of
O(log n) future rebuilds.

46

31

21

1

11

166

26

61

53

36

41

46

56

52

51

48

Analyzing Scapegoat Trees

● Case 2: Our insertion triggers a rebuild.

● Recall that

amortized-cost = real-cost + k · ΔΦ

for a constant k that we pick.

● Here, real-cost is O(log n + size(v)), where v is the
scapegoat node.

● The O(log n) comes from the cost of the actual insertion.

● The O(size(v)) is for the cost of rebuilding.

● For this to amortize away, we need ΔΦ to be -Ω(size(v)).

● Our previous intuition tells us this should be the case.

● Let’s run the numbers to check.

Analyzing Scapegoat Trees

● Let v be the scapegoat
node. We’re interested in

(⚖ v).

● One of v’s children is a
tree containing our
newly-inserted node.
Call that subtree x.

● Call v’s other child y.

● Goal: Determine
(⚖ v) = |size(x) – size(y)|.

v

x y

Since α > 1,
we know that
21/α ∈ (1, 2)

Analyzing Scapegoat Trees

● Since v is α-imbalanced, we
know

height(v) > α lg size(v).

● v is the deepest α-imbalanced
node on the access path. This
means x is α-balanced, so

height(x) ≤ α lg size(x).

● Since the newly-inserted node is
the deepest node in v’s subtree,
we know that

height(v) = height(x) + 1.

● Putting all this together gives

α lg size(v) < α lg size(x) + 1.

● That in turn means that

size(v) < size(x) · 21/α.

v

x y

h
e
ig

h
t(

x
)

h
e
ig

h
t(v

)

Analyzing Scapegoat Trees

● We just proved that

size(v) < size(x) · 21/α.

● We also know that

size(v) = 1 + size(x) + size(y).

● That means

size(x) + size(y) < size(x) · 21/α.

● Therefore,

size(y) < size(x) · (21/α – 1).

● This means that

 ⚖(v) = |size(x) – size(y)|
 > size(x) – size(x) · (21/α – 1)
 = size(x) · (2 – 21/α).

● Combined with the initial
inequality, this gives us that

⚖(v) > size(v) · (21 – 1/α – 1).

v

x y

Since 21/α ∈ (1, 2), we
know 21/α – 1 ∈ (0, 1).

So y must have
fewer nodes than x.

(Surprising, but true!
Explore and see why!)

Analyzing Scapegoat Trees

● We just proved that

size(v) < size(x) · 21/α.

● We also know that

size(v) = 1 + size(x) + size(y).

● That means

size(x) + size(y) < size(x) · 21/α.

● Therefore,

size(y) < size(x) · (21/α – 1).

● This means that

 ⚖(v) = |size(x) – size(y)|
 > size(x) – size(x) · (21/α – 1)
 = size(x) · (2 – 21/α).

● Combined with the initial
inequality, this gives us that

⚖(v) > size(v) · (21 – 1/α – 1).

v

x y

21 – 1/α ∈ (1, 2),
So 21 – 1/α – 1 ∈ (0, 1).

Analyzing Scapegoat Trees

● We’ve just concluded that

⚖(v) > size(v) · (21 – 1/α – 1)

● Let’s take a minute to check
our math.

● If α is close to 1, we’re
requiring the trees to be very
tightly balanced. Therefore,
when an imbalance occurs,
we’d expect (⚖ v) to be small
relative to size(v).

● If α is large, we’re allowing for
huge imbalances in the trees.
Therefore, when a node is too
deep, we expect the tree it’s a
part of to be highly
imbalanced, so we’d expect

(⚖ v) to be large relative to
size(v).

Analyzing Scapegoat Trees

● We’ve just concluded that

⚖(v) > size(v) · (21 – 1/α – 1)

● Notice that for any #xed
value of α that we have

⚖(v) = Ω(size(v)).

● In other words, the
scapegoat node always has
an imbalance that is (at
least) linear in the size of its
subtree.

● We can then backcharge the
linear work required to
optimally rebuild it to the
operations that caused the
imbalance in the #rst place.

Analyzing Scapegoat Trees

● We can now work out the amortized cost of an
insertion that triggers a rebuild.

● Actual cost of inserting a new node: O(log n).

● Actual cost of rebuilding at the scapegoat node:
O(size(v)).

● Change in potential: ΔΦ < -Ω(size(v)).

● Amortized cost:

O(log n) + O(size(v)) – k · Ω(size(v)).

● By tuning k based on the hidden constant factors
in the O and Ω terms, we can get them to cancel,
leaving an amortized cost of O(log n).

Where We Stand

● Here’s the current scorecard for
scapegoat trees.

● Intuitively:

● If you pick α to be smaller, you get
a more balanced tree (faster
lookups), but the overhead to
optimally rebuild subtrees gets
bigger (slower insertions).

● If you pick α to be larger, you get a
less balanced tree (slower lookups),
but the overhead to optimally
rebuild trees is smaller (faster
insertions).

● Tuning α appropriately now
becomes a matter of
engineering.

● Question: What about deletions?

Scapegoat Tree

 Lookup: O(log n)

 Insert: O(log n)*

* amortized

Why Deletions are Direrent

● In the insert-only case, we can
easily detect when the height is
violated, and we know which
node exceeded the height limit.

● Neither of these are true with
deletions.

● Deleting one node may make an
unrelated node height above the
threshold.

● Deleting one node may make
multiple unrelated nodes exceed
the threshold.

● Intuition: Deletions will
require some sort of global
rebuilding of the tree, rather
than the local rebuilding we
saw earlier.

α lg n

36

31 41

46

61

56

51

21

1

11

166

lg n

Why Deletions are Direrent

● In the insert-only case, we can
easily detect when the height is
violated, and we know which
node exceeded the height limit.

● Neither of these are true with
deletions.

● Deleting one node may make an
unrelated node height above the
threshold.

● Deleting one node may make
multiple unrelated nodes exceed
the threshold.

● Intuition: Deletions will
require some sort of global
rebuilding of the tree, rather
than the local rebuilding we
saw earlier.

36

31 41

46

61

56

21

1

11

16

α lg n

6

lg n

Why Deletions are Direrent

● In the insert-only case, we can
easily detect when the height is
violated, and we know which
node exceeded the height limit.

● Neither of these are true with
deletions.

● Deleting one node may make an
unrelated node height above the
threshold.

● Deleting one node may make
multiple unrelated nodes exceed
the threshold.

● Intuition: Deletions will
require some sort of global
rebuilding of the tree, rather
than the local rebuilding we
saw earlier.

36

31 41

46

61

21

1

11

16

α lg n

6

lg n

Why Deletions are Direrent

● In the insert-only case, we can
easily detect when the height is
violated, and we know which
node exceeded the height limit.

● Neither of these are true with
deletions.

● Deleting one node may make an
unrelated node height above the
threshold.

● Deleting one node may make
multiple unrelated nodes exceed
the threshold.

● Intuition: Deletions will
require some sort of global
rebuilding of the tree, rather
than the local rebuilding we
saw earlier.

36

31 41

4621

1

11

16

α lg n

6

lg n

Why Deletions are Direrent

● In the insert-only case, we can
easily detect when the height is
violated, and we know which
node exceeded the height limit.

● Neither of these are true with
deletions.

● Deleting one node may make an
unrelated node height above the
threshold.

● Deleting one node may make
multiple unrelated nodes exceed
the threshold.

● Intuition: Deletions will
require some sort of global
rebuilding of the tree, rather
than the local rebuilding we
saw earlier.

36

31 41

21

1

11

16

α lg n

6

lg n

Why Deletions are Direrent

● In the insert-only case, we can
easily detect when the height is
violated, and we know which
node exceeded the height limit.

● Neither of these are true with
deletions.

● Deleting one node may make an
unrelated node height above the
threshold.

● Deleting one node may make
multiple unrelated nodes exceed
the threshold.

● Intuition: Deletions will
require some sort of global
rebuilding of the tree, rather
than the local rebuilding we
saw earlier.

36

31

21

1

11

16

α lg n

6

lg n

Why Deletions are Direrent

● In the insert-only case, we can
easily detect when the height is
violated, and we know which
node exceeded the height limit.

● Neither of these are true with
deletions.

● Deleting one node may make an
unrelated node height above the
threshold.

● Deleting one node may make
multiple unrelated nodes exceed
the threshold.

● Intuition: Deletions will
require some sort of global
rebuilding of the tree, rather
than the local rebuilding we
saw earlier.

36

31

21

1

11

16

α lg n

6

lg n

Why Deletions are Direrent

● In the insert-only case, we can
easily detect when the height is
violated, and we know which
node exceeded the height limit.

● Neither of these are true with
deletions.

● Deleting one node may make an
unrelated node height above the
threshold.

● Deleting one node may make
multiple unrelated nodes exceed
the threshold.

● Intuition: Deletions will
require some sort of global
rebuilding of the tree, rather
than the local rebuilding we
saw earlier.

36

31

21

1

11

16

α lg n

6

lg n

Why Deletions are Direrent

● As we delete nodes
from our BST, the
value of α lg n will
decrease, but it does
so slowly.

● Leaf nodes will be the
#rst to exceed the
α lg n threshold.

● However, a very large
number of nodes need
to be deleted before
non-leaves cross the
threshold.

● Let’s quantify this.

36

31

21

1

11

166

lg n

α lg n

Why Deletions are Direrent

● Suppose our tree currently has n nodes in it. We’ll perform
some number of deletions and arrive at a tree with nnew nodes.

● At what value of nnew is it possible for non-leaf nodes to have a
depth greater than α lg nnew?

● We need to solve

α lg nnew = α lg n – 1.

● Rearranging gives us that

nnew = n · 2-1/α.

● Note that 2-1/α ∈ (½, 1) for any α > 1.

● We need to delete a constant fraction (speci#cally, a 1 – 2-1/α
fraction) of the nodes before nodes one layer above the
bottom exceed the α lg n limit.

Why Deletions are Direrent

● Suppose our tree currently has n nodes in it. We’ll perform
some number of deletions and arrive at a tree with nnew nodes.

● At what value of nnew is it possible for non-leaf nodes to have a
depth greater than α lg nnew?

● We need to solve

α lg nnew = α lg n – 1.

● Rearranging gives us that

nnew = n · 2-1/α.

● Note that 2-1/α ∈ (½, 1) for any α > 1.

● We need to delete a constant fraction (speci#cally, a 1 – 2-1/α
fraction) of the nodes before nodes one layer above the
bottom exceed the α lg n limit.

… …

α lg n

α lg nnew

Why Deletions are Direrent

● Suppose our tree currently has n nodes in it. We’ll perform
some number of deletions and arrive at a tree with nnew nodes.

● At what value of nnew is it possible for non-leaf nodes to have a
depth greater than α lg nnew?

● We need to solve

α lg nnew < α lg n – 1.

● Rearranging gives us that

nnew < n · 2-1/α.

● Note that 2-1/α ∈ (½, 1) for any α > 1.

● We need to delete at least a constant fraction (speci#cally, a
1 – 2-1/α fraction) of the nodes before nodes one layer above
the bottom could exceed the α lg n limit.

Why Deletions are Direrent

● Idea: Don’t worry about
rebalancing until we lose a
(1 – 2-1/α) fraction of the nodes.

● Assuming we lose fewer than
this many nodes, all nodes in the
tree will be at depth at most
α lg n + 1.

● Focus on any node. Assume there
were n₀ nodes at the point when
the node was inserted. The node
depth is then at most α lg n₀.

● As long as we haven’t lost at least
a (1 – 2-1/α) fraction of the nodes,
the current value of n is such that
α lg n ≥ α lg n₀ – 1.

● This still gives us lookups that
run in time O(log n), and
insertions still work properly.

lg n

α lg n

Why Deletions are Direrent

● Idea: Don’t worry about
rebalancing until we lose a
(1 – 2-1/α) fraction of the nodes.

● Assuming we lose fewer than
this many nodes, all nodes in the
tree will be at depth at most
α lg n + 1.

● Focus on any node. Assume there
were n₀ nodes at the point when
the node was inserted. The node
depth is then at most α lg n₀.

● As long as we haven’t lost at least
a (1 – 2-1/α) fraction of the nodes,
the current value of n is such that
α lg n ≥ α lg n₀ – 1.

● This still gives us lookups that
run in time O(log n), and
insertions still work properly.

lg n

α lg n

Why Deletions are Direrent

● Idea: Don’t worry about
rebalancing until we lose a
(1 – 2-1/α) fraction of the nodes.

● Assuming we lose fewer than
this many nodes, all nodes in the
tree will be at depth at most
α lg n + 1.

● Focus on any node. Assume there
were n₀ nodes at the point when
the node was inserted. The node
depth is then at most α lg n₀.

● As long as we haven’t lost at least
a (1 – 2-1/α) fraction of the nodes,
the current value of n is such that
α lg n ≥ α lg n₀ – 1.

● This still gives us lookups that
run in time O(log n), and
insertions still work properly.

lg n

α lg n

Why Deletions are Direrent

● Idea: Don’t worry about
rebalancing until we lose a
(1 – 2-1/α) fraction of the nodes.

● Assuming we lose fewer than
this many nodes, all nodes in the
tree will be at depth at most
α lg n + 1.

● Focus on any node. Assume there
were n₀ nodes at the point when
the node was inserted. The node
depth is then at most α lg n₀.

● As long as we haven’t lost at least
a (1 – 2-1/α) fraction of the nodes,
the current value of n is such that
α lg n ≥ α lg n₀ – 1.

● This still gives us lookups that
run in time O(log n), and
insertions still work properly.

lg n

α lg n

Why Deletions are Direrent

● Idea: Don’t worry about
rebalancing until we lose a
(1 – 2-1/α) fraction of the nodes.

● Assuming we lose fewer than
this many nodes, all nodes in the
tree will be at depth at most
α lg n + 1.

● Focus on any node. Assume there
were n₀ nodes at the point when
the node was inserted. The node
depth is then at most α lg n₀.

● As long as we haven’t lost at least
a (1 – 2-1/α) fraction of the nodes,
the current value of n is such that
α lg n ≥ α lg n₀ – 1.

● This still gives us lookups that
run in time O(log n), and
insertions still work properly.

lg n

α lg n

Why Deletions are Direrent

● Idea: Don’t worry about
rebalancing until we lose a
(1 – 2-1/α) fraction of the nodes.

● Assuming we lose fewer than
this many nodes, all nodes in the
tree will be at depth at most
α lg n + 1.

● Focus on any node. Assume there
were n₀ nodes at the point when
the node was inserted. The node
depth is then at most α lg n₀.

● As long as we haven’t lost at least
a (1 – 2-1/α) fraction of the nodes,
the current value of n is such that
α lg n ≥ α lg n₀ – 1.

● This still gives us lookups that
run in time O(log n), and
insertions still work properly.

lg n

α lg n

Why Deletions are Direrent

● Idea: Don’t worry about
rebalancing until we lose a
(1 – 2-1/α) fraction of the nodes.

● Assuming we lose fewer than
this many nodes, all nodes in the
tree will be at depth at most
α lg n + 1.

● Focus on any node. Assume there
were n₀ nodes at the point when
the node was inserted. The node
depth is then at most α lg n₀.

● As long as we haven’t lost at least
a (1 – 2-1/α) fraction of the nodes,
the current value of n is such that
α lg n ≥ α lg n₀ – 1.

● This still gives us lookups that
run in time O(log n), and
insertions still work properly.

lg n

α lg n

Why Deletions are Direrent

● Idea: Don’t worry about
rebalancing until we lose a
(1 – 2-1/α) fraction of the nodes.

● Assuming we lose fewer than
this many nodes, all nodes in the
tree will be at depth at most
α lg n + 1.

● Focus on any node. Assume there
were n₀ nodes at the point when
the node was inserted. The node
depth is then at most α lg n₀.

● As long as we haven’t lost at least
a (1 – 2-1/α) fraction of the nodes,
the current value of n is such that
α lg n ≥ α lg n₀ – 1.

● This still gives us lookups that
run in time O(log n), and
insertions still work properly.

lg n

α lg n

Why Deletions are Direrent

● Idea: Don’t worry about
rebalancing until we lose a
(1 – 2-1/α) fraction of the nodes.

● Assuming we lose fewer than
this many nodes, all nodes in the
tree will be at depth at most
α lg n + 1.

● Focus on any node. Assume there
were n₀ nodes at the point when
the node was inserted. The node
depth is then at most α lg n₀.

● As long as we haven’t lost at least
a (1 – 2-1/α) fraction of the nodes,
the current value of n is such that
α lg n ≥ α lg n₀ – 1.

● This still gives us lookups that
run in time O(log n), and
insertions still work properly.

lg n

α lg n

Why Deletions are Direrent

● Idea: Don’t worry about
rebalancing until we lose a
(1 – 2-1/α) fraction of the nodes.

● Assuming we lose fewer than
this many nodes, all nodes in the
tree will be at depth at most
α lg n + 1.

● Focus on any node. Assume there
were n₀ nodes at the point when
the node was inserted. The node
depth is then at most α lg n₀.

● As long as we haven’t lost at least
a (1 – 2-1/α) fraction of the nodes,
the current value of n is such that
α lg n ≥ α lg n₀ – 1.

● This still gives us lookups that
run in time O(log n), and
insertions still work properly.

lg n

α lg n

Why Deletions are Direrent

● Once we’ve lost a (1 – 2-1/α)
fraction of the nodes, we
need to worry about
rebalancing the tree.

● We won’t know much
about the tree shape.

● It could have a large
number of deep nodes.

● It could be perfectly
balanced.

● Idea: Don’t try to analyze
the tree. Just rebuild the
entire tree from
scratch. "

lg n

α lg n

Why Deletions are Direrent

● Once we’ve lost a (1 – 2-1/α)
fraction of the nodes, we
need to worry about
rebalancing the tree.

● We won’t know much
about the tree shape.

● It could have a large
number of deep nodes.

● It could be perfectly
balanced.

● Idea: Don’t try to analyze
the tree. Just rebuild the
entire tree from
scratch. "

lg n

α lg n

Why Deletions are Direrent

● Once we’ve lost a (1 – 2-1/α)
fraction of the nodes, we
need to worry about
rebalancing the tree.

● We won’t know much
about the tree shape.

● It could have a large
number of deep nodes.

● It could be perfectly
balanced.

● Idea: Don’t try to analyze
the tree. Just rebuild the
entire tree from
scratch. "

lg n

α lg n

Why Deletions are Direrent

● Once we’ve lost a (1 – 2-1/α)
fraction of the nodes, we
need to worry about
rebalancing the tree.

● We won’t know much
about the tree shape.

● It could have a large
number of deep nodes.

● It could be perfectly
balanced.

● Idea: Don’t try to analyze
the tree. Just rebuild the
entire tree from
scratch. "

lg n

α lg n

Why Deletions are Direrent

● Once we’ve lost a (1 – 2-1/α)
fraction of the nodes, we
need to worry about
rebalancing the tree.

● We won’t know much
about the tree shape.

● It could have a large
number of deep nodes.

● It could be perfectly
balanced.

● Idea: Don’t try to analyze
the tree. Just rebuild the
entire tree from
scratch. "

lg n

α lg n

Scapegoat Tree Deletions

● Here’s how this approach will work.

● Keep track of the maximum number of nodes the tree
has had since it was last globally rebuilt. (Call this nmax).

● If the number of nodes drops to a nmax · 2-1/α, globally
rebuild the tree as a perfectly balanced tree, then reset
nmax to the current tree size.

● Although rebuilding the tree is an expensive
operation, intuitively we expect to be able to
“backcharge” the work to the lazy delete
operations that triggered it.

Scapegoat Tree Deletions

● Our goal now is to work out the amortized cost of doing
global rebuilds on deletions.

● Recall: Our current potential function is

Φ = Σᵥ ’(⚖ v),

which we chose to make the cost of local rebuilds on
insertions amortize away.

● We need to adjust this potential function to account for the
fact that deleted nodes slowly lead us to do a global rebuild
of the whole tree.

● Idea: Change our potential to

Φ = D + Σᵥ ’(⚖ v),

where D is the number of deletions that have been
performed since we last did a global rebuild.

Scapegoat Tree Deletions

● What is the amortized cost of a deletion when we don’t
trigger a global rebuild?

● Actual cost: O(log n), since the tree height is at most
α lg n + 1.

● Change in potential (recall that Φ = D + Σᵥ ’(⚖ v)):

● D increases by one, since we’ve performed a deletion.

● ’⚖ (v) changes by at most two for each node on the access path of
the removed node, and there are O(log n) such nodes.

● Net change: O(log n).

● Amortized cost:

O(log n) + k · O(log n) = O(log n).

Scapegoat Tree Deletions

● What is the amortized cost of a deletion when we do trigger a
global rebuild?

● We picked

Φ = D + Σᵥ ’(⚖ v).

● After the rebuild, we have Σᵥ ’(⚖ v) = 0. Therefore, there is an
unknown but nonpositive change in potential for this term.

● How much does D change?

● At the point where we start the rebuild, we have n = nmax · 2-1/α nodes
left in the tree.

● This means that D ≥ nmax · (1 – 2-1/α).

● Rewriting in terms of n, this means D ≥ n · (21/α – 1) = Ω(n).

● Since after this step we drop D to zero, we have ΔD ≤ -Ω(n).

● Overall, we have ΔΦ ≤ -Ω(n).

Scapegoat Tree Deletions

● Actual cost of the deletion:

● O(log n) for the actual deletion logic.

● O(n) to rebuild the tree.

● Amortized cost:

O(log n) + O(n) – k · Ω(n).

● As before, we can tune k based on the
hidden constant factors in the O and Ω
terms to make them cancel out and leave
behind an amortized cost of O(log n).

The Final Scorecard

● Here’s the #nal
scorecard for our
scapegoat tree.

● It matches the time
bounds we’d expect of a
red/black tree, in an
amortized sense, with a
dramatically simpler
implementation.

● This gives a sense of
just how useful a
technique amortization
can be!

Scapegoat Tree

 Lookup: O(log n)

 Insert: O(log n)*

 Delete: O(log n)*

* amortized

Further Exploration

● I haven’t seen much work done into building an optimized scapegoat tree
implementation. How fast can you make this idea work? Is it competitive with a
red/black tree?

● We’ve treated α as a constant. What if you allow it to vary based on the work{ow (say,
decreasing it as more lookups happen and increasing it as more deletions/insertions
happen)? A past CS166 project team looked into this in 2014, and I’m curious to see it on
modern hardware.

● Are there other, less aggressive strategies besides rebuilding the scapegoat subtree that
can be used to restore balance?

● Are there other ways of picking a scapegoat node that work better in practice? For
example, could you pick a scapegoat higher up in the tree that would do a better job
rebalancing things?

● What is the practical time/space tradeor between the two approaches for calculating
size(v) when #nding a scapegoat?

● The version of scapegoat trees described here is a hybrid between two approaches: the
original developed by Galperin and Rivest and a simpli#cation by Jer Erickson. The
Galperin/Rivest version has tighter structural constraints, while Erickson’s version uses
a direrent deletion strategy. Can you remix this ideas in other ways?

● Because there are no rotations, it should be way easier to augment a scapegoat tree
than it is to augment a red/black tree. Can you #nd a weaker set of requirements for
augmenting a BST if you assume the tree you’re augmenting is a scapegoat tree?

Next Time

● Tournament Heaps

● A simple and fast priority queue.

● Lazy Tournament Heaps

● An asymptotically faster priority queue.

	03_5 ScapegoatTree.pdf
	03_5_1 ScapegoatTreeFull.pdf

